Skip to content
Snippets Groups Projects
Commit 8aeda847 authored by Tim O'Donnell's avatar Tim O'Donnell
Browse files

tests

parent dba3609b
No related branches found
No related tags found
No related merge requests found
......@@ -91,7 +91,7 @@ def teardown():
cleanup()
def Xtest_basic():
def test_basic():
affinity_predictor = PAN_ALLELE_PREDICTOR_NO_MASS_SPEC
models = []
for affinity_network in affinity_predictor.class1_pan_allele_models:
......@@ -99,11 +99,10 @@ def Xtest_basic():
optimizer="adam",
random_negative_rate=0.0,
random_negative_constant=0,
max_epochs=5,
max_epochs=100,
learning_rate=0.001,
batch_generator_batch_size=256)
presentation_network.load_from_class1_neural_network(affinity_network)
print(presentation_network.network.get_config())
models.append(presentation_network)
predictor = Class1PresentationPredictor(
......@@ -164,12 +163,14 @@ def Xtest_basic():
train_df = pandas.DataFrame({
"peptide": numpy.concatenate([
random_peptides(256, length=length)
for length in range(8,16)
for length in [9]
]),
})
train_df["allele"] = "HLA-A*02:20"
train_df["experiment"] = "experiment1"
train_df["label"] = train_df.peptide.str.match("^[KSEQ]").astype("float32")
train_df["pre_train_affinity_prediction"] = affinity_predictor.predict(
train_df.peptide.values, alleles=train_df.allele.values)
allele_encoding = MultipleAlleleEncoding(
experiment_names=train_df.experiment.values,
experiment_to_allele_list={
......@@ -189,8 +190,18 @@ def Xtest_basic():
train_df["updated_score"] = new_predictor.predict(
train_df.peptide.values,
alleles=["HLA-A*02:20"])
train_df["score_diff"] = train_df.updated_score - train_df.original_score
mean_change = train_df.groupby("label").score_diff.mean()
print("Mean change:")
print(mean_change)
assert_greater(mean_change[1.0], mean_change[0.0])
print(train_df)
#import ipdb ; ipdb.set_trace()
train_df["post_train_affinity_prediction"] = affinity_predictor.predict(
train_df.peptide.values,
alleles=train_df.allele.values)
assert_array_equal(
train_df.pre_train_affinity_prediction.values,
train_df.post_train_affinity_prediction.values)
def scramble_peptide(peptide):
......@@ -279,8 +290,6 @@ def test_loss():
neg = y_pred[(y_true == 0.0).astype(bool)]
term = neg.reshape((-1, 1)) - pos + delta
print("Term:")
print(term)
expected2 = (
numpy.maximum(0, term)**2).sum() / (
len(pos) * neg.shape[0] * neg.shape[1])
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment