Skip to content
Snippets Groups Projects
Commit 733d8f4f authored by Tim O'Donnell's avatar Tim O'Donnell
Browse files

fix

parent 2ca1b5ee
No related branches found
No related tags found
No related merge requests found
......@@ -62,8 +62,9 @@ for kind in with_mass_spec no_mass_spec
do
python run_mhcflurry.py \
proteome_peptides.csv.bz2 \
--chunk-size 10000000 \
--chunk-size 100000 \
--models-dir "$(mhcflurry-downloads path models_class1_pan)/models.$kind" \
--batch-size 65536 \
--allele $(cat alleles.txt) \
--out "predictions/mhcflurry.$kind" \
--num-jobs $NUM_JOBS --max-tasks-per-worker 1 --gpus $GPUS --max-workers-per-gpu 1
......
......@@ -56,7 +56,7 @@ parser.add_argument(
parser.add_argument(
"--chunk-size",
type=int,
default=100000000,
default=100000,
help="Num peptides per job. Default: %(default)s")
parser.add_argument(
"--batch-size",
......@@ -76,6 +76,12 @@ parser.add_argument(
type=int,
help="Keras verbosity. Default: %(default)s",
default=0)
parser.add_argument(
"--max-peptides",
type=int,
help="Max peptides to process. For debugging.",
default=None)
add_local_parallelism_args(parser)
add_cluster_parallelism_args(parser)
......@@ -97,18 +103,17 @@ def run(argv=sys.argv[1:]):
serial_run = not args.cluster_parallelism and args.num_jobs == 0
# It's important that we don't trigger a Keras import here since that breaks
# local parallelism (tensorflow backend). So we set optimization_level=0 if
# using local parallelism.
# local parallelism (tensorflow backend). So we set optimization_level=0.
predictor = Class1AffinityPredictor.load(
args.models_dir,
#optimization_level=None if serial_run or args.cluster_parallelism else 0,
optimization_level=0,
)
alleles = [normalize_allele_name(a) for a in args.allele]
alleles = sorted(set(alleles))
peptides = pandas.read_csv(args.input_peptides).peptide.drop_duplicates()
peptides = pandas.read_csv(
args.input_peptides, nrows=args.max_peptides).peptide.drop_duplicates()
print("Filtering to valid peptides. Starting at: ", len(peptides))
peptides = peptides[peptides.str.match("^[ACDEFGHIKLMNPQRSTVWY]+$")]
print("Filtered to: ", len(peptides))
......@@ -136,11 +141,8 @@ def run(argv=sys.argv[1:]):
print("Wrote: ", out_alleles)
num_chunks = int(math.ceil(len(peptides) / args.chunk_size))
print("Split peptides into %d chunks" % num_chunks)
peptide_chunks = [
EncodableSequences.create(chunk)
for chunk in numpy.array_split(peptides, num_chunks)
]
print("Splitting peptides into %d chunks" % num_chunks)
peptide_chunks = numpy.array_split(peptides, num_chunks)
GLOBAL_DATA["predictor"] = predictor
GLOBAL_DATA["args"] = {
......@@ -151,14 +153,13 @@ def run(argv=sys.argv[1:]):
}
work_items = []
for allele in alleles:
for (chunk_index, chunk_peptides) in enumerate(peptide_chunks):
work_item = {
'allele': allele,
'chunk_index': chunk_index,
'chunk_peptides': chunk_peptides,
}
work_items.append(work_item)
for (chunk_index, chunk_peptides) in enumerate(peptide_chunks):
work_item = {
'alleles': alleles,
'chunk_index': chunk_index,
'peptides': chunk_peptides,
}
work_items.append(work_item)
print("Work items: ", len(work_items))
worker_pool = None
......@@ -191,27 +192,30 @@ def run(argv=sys.argv[1:]):
for allele in alleles:
allele_to_chunk_index_to_predictions[allele] = {}
for (allele, chunk_index, predictions) in tqdm.tqdm(
for (chunk_index, allele_to_predictions) in tqdm.tqdm(
results, total=len(work_items)):
chunk_index_to_predictions = allele_to_chunk_index_to_predictions[allele]
assert chunk_index not in chunk_index_to_predictions
chunk_index_to_predictions[chunk_index] = predictions
if len(allele_to_chunk_index_to_predictions[allele]) == num_chunks:
chunk_predictions = sorted(chunk_index_to_predictions.items())
assert [i for (i, _) in chunk_predictions] == list(range(num_chunks))
predictions = numpy.concatenate([
predictions for (_, predictions) in chunk_predictions
])
assert len(predictions) == num_peptides
out_path = os.path.join(args.out, allele.replace("*", "")) + ".npz"
out_path = os.path.abspath(out_path)
numpy.savez(out_path, predictions)
print("Wrote:", out_path)
del allele_to_chunk_index_to_predictions[allele]
for (allele, predictions) in allele_to_predictions.items():
chunk_index_to_predictions = allele_to_chunk_index_to_predictions[
allele
]
assert chunk_index not in chunk_index_to_predictions
chunk_index_to_predictions[chunk_index] = predictions
if len(allele_to_chunk_index_to_predictions[allele]) == num_chunks:
chunk_predictions = sorted(chunk_index_to_predictions.items())
assert [i for (i, _) in chunk_predictions] == list(
range(num_chunks))
predictions = numpy.concatenate([
predictions for (_, predictions) in chunk_predictions
])
assert len(predictions) == num_peptides
out_path = os.path.join(
args.out, allele.replace("*", "")) + ".npz"
out_path = os.path.abspath(out_path)
numpy.savez(out_path, predictions)
print("Wrote:", out_path)
del allele_to_chunk_index_to_predictions[allele]
assert not allele_to_chunk_index_to_predictions, (
"Not all results written: ", allele_to_chunk_index_to_predictions)
......@@ -225,35 +229,35 @@ def run(argv=sys.argv[1:]):
prediction_time / 60.0))
def do_predictions(allele, chunk_index, chunk_peptides, constant_data=GLOBAL_DATA):
def do_predictions(chunk_index, peptides, alleles, constant_data=GLOBAL_DATA):
return predict_for_allele(
allele,
chunk_index,
chunk_peptides,
constant_data['predictor'],
peptides,
alleles,
predictor=constant_data['predictor'],
**constant_data["args"])
def predict_for_allele(
allele,
chunk_index,
chunk_peptides,
peptides,
alleles,
predictor,
verbose=False,
model_kwargs={}):
if verbose:
print("Predicting", allele)
predictor.optimize() # since we may have loaded with optimization_level=0
predictor.optimize(warn=False) # since we loaded with optimization_level=0
start = time.time()
predictions = predictor.predict(
peptides=chunk_peptides,
allele=allele,
throw=False,
model_kwargs=model_kwargs).astype('float32')
results = {}
peptides = EncodableSequences.create(peptides)
for allele in alleles:
results[allele] = predictor.predict(
peptides=peptides,
allele=allele,
throw=False,
model_kwargs=model_kwargs).astype('float32')
if verbose:
print("Done predicting", allele, "in", time.time() - start, "sec")
return (allele, chunk_index, predictions)
print("Done predicting in", time.time() - start, "sec")
return (chunk_index, results)
if __name__ == '__main__':
......
......@@ -521,7 +521,7 @@ class Class1AffinityPredictor(object):
"succeeded" if optimized else "not supported for these models")
return result
def optimize(self):
def optimize(self, warn=True):
"""
EXPERIMENTAL: Optimize the predictor for faster predictions.
......@@ -545,7 +545,8 @@ class Class1AffinityPredictor(object):
merge_method="concatenate")
]
except NotImplementedError as e:
logging.warning("Optimization failed: %s", str(e))
if warn:
logging.warning("Optimization failed: %s", str(e))
return False
self._manifest_df = None
self.clear_cache()
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment