Skip to content
Snippets Groups Projects
Commit 6e44ee45 authored by Tim O'Donnell's avatar Tim O'Donnell
Browse files

fix tests

parent 99a3ea81
No related merge requests found
from mhcflurry.class1_affinity_predictor import Class1AffinityPredictor
from mhcflurry.class1_neural_network import Class1NeuralNetwork
__version__ = "1.1.0"
from .class1_affinity_predictor import Class1AffinityPredictor
from .class1_neural_network import Class1NeuralNetwork
from .version import __version__
__all__ = [
"__version__",
......
......@@ -7,6 +7,8 @@ import time
import warnings
from os.path import join, exists
from os import mkdir
from socket import gethostname
from getpass import getuser
import mhcnames
import numpy
......@@ -20,6 +22,7 @@ from .downloads import get_path
from .encodable_sequences import EncodableSequences
from .percent_rank_transform import PercentRankTransform
from .regression_target import to_ic50
from .version import __version__
class Class1AffinityPredictor(object):
......@@ -193,7 +196,8 @@ class Class1AffinityPredictor(object):
the configurations of each Class1NeuralNetwork, along with per-network
files giving the model weights. If there are pan-allele predictors in
the ensemble, the allele pseudosequences are also stored in the
directory.
directory. There is also a small file "index.txt" with basic metadata:
when the models were trained, by whom, on what host.
Parameters
----------
......@@ -234,6 +238,18 @@ class Class1AffinityPredictor(object):
write_manifest_df.to_csv(manifest_path, index=False)
logging.info("Wrote: %s" % manifest_path)
# Write "info.txt"
info_path = join(models_dir, "info.txt")
rows = [
("trained on", time.asctime()),
("package ", "mhcflurry %s" % __version__),
("hostname ", gethostname()),
("user ", getuser()),
]
pandas.DataFrame(rows).to_csv(
info_path, sep="\t", header=False, index=False)
print("Wrote: %s" % info_path)
if self.allele_to_percent_rank_transform:
percent_ranks_df = None
for (allele, transform) in self.allele_to_percent_rank_transform.items():
......
__version__ = "1.1.0"
......@@ -40,7 +40,7 @@ except:
logging.warning("Conversion of long_description from MD to RST failed")
pass
with open('mhcflurry/__init__.py', 'r') as f:
with open('mhcflurry/version.py', 'r') as f:
version = re.search(
r'^__version__\s*=\s*[\'"]([^\'"]*)[\'"]',
f.read(),
......
......@@ -51,7 +51,7 @@ def test_a1_known_epitopes_in_newly_trained_model():
allele = "HLA-A*01:01"
df = pandas.read_csv(
get_path(
"data_curated", "curated_training_data.csv.bz2"))
"data_curated", "curated_training_data.no_mass_spec.csv.bz2"))
df = df.ix[
(df.allele == allele) &
(df.peptide.str.len() >= 8) &
......@@ -137,7 +137,7 @@ def test_class1_affinity_predictor_a0205_memorize_training_data():
df = pandas.read_csv(
get_path(
"data_curated", "curated_training_data.csv.bz2"))
"data_curated", "curated_training_data.no_mass_spec.csv.bz2"))
df = df.ix[
df.allele == allele
]
......
......@@ -37,7 +37,7 @@ def test_class1_neural_network_a0205_training_accuracy():
df = pandas.read_csv(
get_path(
"data_curated", "curated_training_data.csv.bz2"))
"data_curated", "curated_training_data.no_mass_spec.csv.bz2"))
df = df.ix[
df.allele == allele
]
......
......@@ -57,12 +57,13 @@ def run_and_check(n_jobs=0):
json.dump(HYPERPARAMETERS, fd)
args = [
"--data", get_path("data_curated", "curated_training_data.csv.bz2"),
"--data", get_path("data_curated", "curated_training_data.no_mass_spec.csv.bz2"),
"--hyperparameters", hyperparameters_filename,
"--allele", "HLA-A*02:01", "HLA-A*01:01", "HLA-A*03:01",
"--out-models-dir", models_dir,
"--percent-rank-calibration-num-peptides-per-length", "10000",
"--parallelization-num-jobs", str(n_jobs),
"--ignore-inequalities",
]
print("Running with args: %s" % args)
train_allele_specific_models_command.run(args)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment