Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
mhc_rank
Manage
Activity
Members
Labels
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Patrick Skillman-Lawrence
mhc_rank
Commits
68dd95d9
Commit
68dd95d9
authored
9 years ago
by
Alex Rubinsteyn
Browse files
Options
Downloads
Patches
Plain Diff
filter out rows of matrix with only one observation
parent
fd2318cd
Loading
Loading
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
experiments/matrix-completion-accuracy.py
+19
-153
19 additions, 153 deletions
experiments/matrix-completion-accuracy.py
experiments/matrix_completion_helpers.py
+181
-0
181 additions, 0 deletions
experiments/matrix_completion_helpers.py
with
200 additions
and
153 deletions
experiments/matrix-completion-accuracy.py
+
19
−
153
View file @
68dd95d9
...
...
@@ -25,19 +25,16 @@ from fancyimpute import (
BiScaler
,
SimpleFill
,
)
from
fancyimpute.dictionary_helpers
import
(
dense_matrix_from_nested_dictionary
,
transpose_nested_dictionary
,
)
from
mhcflurry.data
import
load_allele_dicts
import
sklearn.metrics
from
sklearn.cross_validation
import
StratifiedKFold
from
scipy
import
stats
import
numpy
as
np
import
pandas
as
pd
from
dataset_paths
import
PETERS2009_CSV_PATH
from
score_set
import
ScoreSet
from
matrix_completion_helpers
import
(
load_data
,
evaluate_predictions
,
stratified_cross_validation
)
parser
=
argparse
.
ArgumentParser
()
...
...
@@ -77,6 +74,12 @@ parser.add_argument(
action
=
"
store_true
"
,
help
=
"
Center and rescale rows of affinity matrix
"
)
parser
.
add_argument
(
"
--min-observations-per-peptide
"
,
type
=
int
,
default
=
2
,
help
=
"
Drop peptide entries with fewer than this number of measured affinities
"
)
parser
.
add_argument
(
"
--n-folds
"
,
default
=
10
,
...
...
@@ -89,48 +92,6 @@ parser.add_argument(
action
=
"
store_true
"
)
def
evaluate_predictions
(
y_true
,
y_pred
,
max_ic50
):
"""
Return mean absolute error, Kendall tau, AUC and F1 score
"""
if
len
(
y_pred
)
!=
len
(
y_true
):
raise
ValueError
(
"
y_pred must have same number of elements as y_true
"
)
mae
=
np
.
mean
(
np
.
abs
(
y_true
-
y_pred
))
# if all predictions are the same
if
(
y_pred
[
0
]
==
y_pred
).
all
():
return
(
mae
,
0
,
0.5
,
0
)
tau
,
_
=
stats
.
kendalltau
(
y_pred
,
y_true
)
true_ic50s
=
max_ic50
**
(
1.0
-
np
.
array
(
y_true
))
predicted_ic50s
=
max_ic50
**
(
1.0
-
np
.
array
(
y_pred
))
true_binding_label
=
true_ic50s
<=
500
if
true_binding_label
.
all
()
or
not
true_binding_label
.
any
():
# can't compute AUC or F1 without both negative and positive cases
return
(
mae
,
tau
,
0.5
,
0
)
auc
=
sklearn
.
metrics
.
roc_auc_score
(
true_binding_label
,
y_pred
)
predicted_binding_label
=
predicted_ic50s
<=
500
if
predicted_binding_label
.
all
()
or
not
predicted_binding_label
.
any
():
# can't compute F1 without both positive and negative predictions
return
(
mae
,
tau
,
auc
,
0
)
f1_score
=
sklearn
.
metrics
.
f1_score
(
true_binding_label
,
predicted_binding_label
)
return
mae
,
tau
,
auc
,
f1_score
def
create_imputation_methods
(
verbose
=
False
,
clip_imputed_values
=
False
,
...
...
@@ -174,106 +135,6 @@ def create_imputation_methods(
return
result_dict
def
load_data
(
binding_data_csv
,
max_ic50
,
only_human
=
False
,
min_allele_size
=
1
):
allele_to_peptide_to_affinity
=
load_allele_dicts
(
binding_data_csv
,
max_ic50
=
max_ic50
,
only_human
=
only_human
,
regression_output
=
True
,
min_allele_size
=
min_allele_size
)
peptide_to_allele_to_affinity
=
transpose_nested_dictionary
(
allele_to_peptide_to_affinity
)
n_binding_values
=
sum
(
len
(
allele_dict
)
for
allele_dict
in
allele_to_peptide_to_affinity
.
values
()
)
print
(
"
Loaded %d binding values for %d alleles
"
%
(
n_binding_values
,
len
(
allele_to_peptide_to_affinity
)))
X
,
peptide_list
,
allele_list
=
\
dense_matrix_from_nested_dictionary
(
peptide_to_allele_to_affinity
)
missing_mask
=
np
.
isnan
(
X
)
observed_mask
=
~
missing_mask
n_observed_per_peptide
=
observed_mask
.
sum
(
axis
=
1
)
min_observed_per_peptide
=
n_observed_per_peptide
.
min
()
min_peptide_indices
=
np
.
where
(
n_observed_per_peptide
==
min_observed_per_peptide
)[
0
]
print
(
"
%d peptides with %d observations
"
%
(
len
(
min_peptide_indices
),
min_observed_per_peptide
))
n_observed_per_allele
=
observed_mask
.
sum
(
axis
=
0
)
min_observed_per_allele
=
n_observed_per_allele
.
min
()
min_allele_indices
=
np
.
where
(
n_observed_per_allele
==
min_observed_per_allele
)[
0
]
print
(
"
%d alleles with %d observations: %s
"
%
(
len
(
min_allele_indices
),
min_observed_per_allele
,
[
allele_list
[
i
]
for
i
in
min_allele_indices
]))
return
X
,
missing_mask
,
observed_mask
,
peptide_list
,
allele_list
def
index_counts
(
indices
):
max_index
=
indices
.
max
()
counts
=
np
.
zeros
(
max_index
+
1
,
dtype
=
int
)
for
index
in
indices
:
counts
[
index
]
+=
1
return
counts
def
stratified_cross_validation
(
X
,
observed_mask
,
n_folds
=
10
):
n_observed
=
observed_mask
.
sum
()
(
observed_peptide_index
,
observed_allele_index
)
=
np
.
where
(
observed_mask
)
observed_indices
=
np
.
ravel_multi_index
(
(
observed_peptide_index
,
observed_allele_index
),
dims
=
observed_mask
.
shape
)
assert
len
(
observed_indices
)
==
n_observed
observed_allele_counts
=
observed_mask
.
sum
(
axis
=
0
)
print
(
"
# observed per allele: %s
"
%
(
observed_allele_counts
,))
assert
(
index_counts
(
observed_allele_index
)
==
observed_allele_counts
).
all
()
kfold
=
StratifiedKFold
(
observed_allele_index
,
n_folds
=
n_folds
,
shuffle
=
True
)
for
(
_
,
indirect_test_indices
)
in
kfold
:
test_linear_indices
=
observed_indices
[
indirect_test_indices
]
test_coords
=
np
.
unravel_index
(
test_linear_indices
,
dims
=
observed_mask
.
shape
)
test_allele_counts
=
index_counts
(
test_coords
[
1
])
allele_fractions
=
test_allele_counts
/
observed_allele_counts
.
astype
(
float
)
print
(
"
Fraction of each allele in this CV fold: %s
"
%
(
allele_fractions
,))
X_test_vector
=
X
[
test_coords
]
X_fold
=
X
.
copy
()
X_fold
[
test_coords
]
=
np
.
nan
empty_row_mask
=
np
.
isfinite
(
X_fold
).
sum
(
axis
=
1
)
==
0
ok_row_mask
=
~
empty_row_mask
ok_row_indices
=
np
.
where
(
ok_row_mask
)[
0
]
empty_col_mask
=
np
.
isfinite
(
X_fold
).
sum
(
axis
=
0
)
==
0
ok_col_mask
=
~
empty_col_mask
ok_col_indices
=
np
.
where
(
ok_col_mask
)[
0
]
ok_mesh
=
np
.
ix_
(
ok_row_indices
,
ok_col_indices
)
print
(
"
Dropping %d empty rows, %d empty columns
"
%
(
empty_row_mask
.
sum
(),
empty_col_mask
.
sum
()))
yield
(
X_fold
,
ok_mesh
,
test_coords
,
X_test_vector
)
if
__name__
==
"
__main__
"
:
args
=
parser
.
parse_args
()
print
(
args
)
...
...
@@ -283,12 +144,17 @@ if __name__ == "__main__":
)
print
(
"
Imputation methods: %s
"
%
imputation_methods
)
X
,
missing_mask
,
observed_mask
,
peptide_list
,
allele_list
=
load_data
(
X
,
observed_mask
,
peptide_list
,
allele_list
=
load_data
(
binding_data_csv
=
args
.
binding_data_csv
,
max_ic50
=
args
.
max_ic50
,
only_human
=
args
.
only_human
,
min_allele_size
=
args
.
n_folds
)
min_observations_per_allele
=
args
.
n_folds
,
min_observations_per_peptide
=
args
.
min_observations_per_peptide
)
print
(
"
Loaded binding data, shape: %s, n_observed=%d/%d (%0.2f%%)
"
%
(
X
.
shape
,
observed_mask
.
sum
(),
X
.
size
,
100.0
*
observed_mask
.
sum
()
/
X
.
size
))
if
args
.
save_incomplete_affinity_matrix
:
print
(
"
Saving incomplete data to %s
"
%
args
.
save_incomplete_affinity_matrix
)
df
=
pd
.
DataFrame
(
X
,
columns
=
allele_list
,
index
=
peptide_list
)
...
...
This diff is collapsed.
Click to expand it.
experiments/matrix_completion_helpers.py
0 → 100644
+
181
−
0
View file @
68dd95d9
# Copyright (c) 2015. Mount Sinai School of Medicine
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
fancyimpute.dictionary_helpers
import
(
dense_matrix_from_nested_dictionary
,
transpose_nested_dictionary
,
)
from
mhcflurry.data
import
load_allele_dicts
import
sklearn.metrics
from
sklearn.cross_validation
import
StratifiedKFold
from
scipy
import
stats
import
numpy
as
np
def
evaluate_predictions
(
y_true
,
y_pred
,
max_ic50
):
"""
Return mean absolute error, Kendall tau, AUC and F1 score
"""
if
len
(
y_pred
)
!=
len
(
y_true
):
raise
ValueError
(
"
y_pred must have same number of elements as y_true
"
)
mae
=
np
.
mean
(
np
.
abs
(
y_true
-
y_pred
))
# if all predictions are the same
if
(
y_pred
[
0
]
==
y_pred
).
all
():
return
(
mae
,
0
,
0.5
,
0
)
tau
,
_
=
stats
.
kendalltau
(
y_pred
,
y_true
)
true_ic50s
=
max_ic50
**
(
1.0
-
np
.
array
(
y_true
))
predicted_ic50s
=
max_ic50
**
(
1.0
-
np
.
array
(
y_pred
))
true_binding_label
=
true_ic50s
<=
500
if
true_binding_label
.
all
()
or
not
true_binding_label
.
any
():
# can't compute AUC or F1 without both negative and positive cases
return
(
mae
,
tau
,
0.5
,
0
)
auc
=
sklearn
.
metrics
.
roc_auc_score
(
true_binding_label
,
y_pred
)
predicted_binding_label
=
predicted_ic50s
<=
500
if
predicted_binding_label
.
all
()
or
not
predicted_binding_label
.
any
():
# can't compute F1 without both positive and negative predictions
return
(
mae
,
tau
,
auc
,
0
)
f1_score
=
sklearn
.
metrics
.
f1_score
(
true_binding_label
,
predicted_binding_label
)
return
mae
,
tau
,
auc
,
f1_score
def
load_data
(
binding_data_csv
,
max_ic50
,
only_human
=
False
,
min_observations_per_allele
=
1
,
min_observations_per_peptide
=
1
):
allele_to_peptide_to_affinity
=
load_allele_dicts
(
binding_data_csv
,
max_ic50
=
max_ic50
,
only_human
=
only_human
,
regression_output
=
True
)
peptide_to_allele_to_affinity
=
transpose_nested_dictionary
(
allele_to_peptide_to_affinity
)
n_binding_values
=
sum
(
len
(
allele_dict
)
for
allele_dict
in
allele_to_peptide_to_affinity
.
values
()
)
print
(
"
Loaded %d binding values for %d alleles
"
%
(
n_binding_values
,
len
(
allele_to_peptide_to_affinity
)))
X
,
peptide_list
,
allele_list
=
\
dense_matrix_from_nested_dictionary
(
peptide_to_allele_to_affinity
)
observed_mask
=
np
.
isfinite
(
X
)
n_observed_per_peptide
=
observed_mask
.
sum
(
axis
=
1
)
too_few_peptide_observations
=
(
n_observed_per_peptide
<
min_observations_per_peptide
)
if
too_few_peptide_observations
.
any
():
drop_peptide_indices
=
np
.
where
(
too_few_peptide_observations
)[
0
]
keep_peptide_indices
=
np
.
where
(
~
too_few_peptide_observations
)[
0
]
print
(
"
Dropping %d peptides with <%d observations
"
%
(
len
(
drop_peptide_indices
),
min_observations_per_peptide
))
X
=
X
[
keep_peptide_indices
]
observed_mask
=
observed_mask
[
keep_peptide_indices
]
peptide_list
=
[
peptide_list
[
i
]
for
i
in
keep_peptide_indices
]
n_observed_per_allele
=
observed_mask
.
sum
(
axis
=
0
)
too_few_allele_observations
=
(
n_observed_per_allele
<
min_observations_per_peptide
)
if
too_few_peptide_observations
.
any
():
drop_allele_indices
=
np
.
where
(
too_few_allele_observations
)[
0
]
keep_allele_indices
=
np
.
where
(
~
too_few_allele_observations
)[
0
]
print
(
"
Dropping %d alleles with <%d observations: %s
"
%
(
len
(
drop_allele_indices
),
min_observations_per_allele
,
[
allele_list
[
i
]
for
i
in
drop_allele_indices
]))
X
=
X
[:,
keep_allele_indices
]
observed_mask
=
observed_mask
[:,
keep_allele_indices
]
allele_list
=
[
allele_list
[
i
]
for
i
in
keep_allele_indices
]
return
X
,
observed_mask
,
peptide_list
,
allele_list
def
index_counts
(
indices
):
max_index
=
indices
.
max
()
counts
=
np
.
zeros
(
max_index
+
1
,
dtype
=
int
)
for
index
in
indices
:
counts
[
index
]
+=
1
return
counts
def
stratified_cross_validation
(
X
,
observed_mask
,
n_folds
=
10
):
n_observed
=
observed_mask
.
sum
()
(
observed_peptide_index
,
observed_allele_index
)
=
np
.
where
(
observed_mask
)
observed_indices
=
np
.
ravel_multi_index
(
(
observed_peptide_index
,
observed_allele_index
),
dims
=
observed_mask
.
shape
)
assert
len
(
observed_indices
)
==
n_observed
observed_allele_counts
=
observed_mask
.
sum
(
axis
=
0
)
print
(
"
# observed per allele: %s
"
%
(
observed_allele_counts
,))
assert
(
index_counts
(
observed_allele_index
)
==
observed_allele_counts
).
all
()
kfold
=
StratifiedKFold
(
observed_allele_index
,
n_folds
=
n_folds
,
shuffle
=
True
)
for
(
_
,
indirect_test_indices
)
in
kfold
:
test_linear_indices
=
observed_indices
[
indirect_test_indices
]
test_coords
=
np
.
unravel_index
(
test_linear_indices
,
dims
=
observed_mask
.
shape
)
test_allele_counts
=
index_counts
(
test_coords
[
1
])
allele_fractions
=
test_allele_counts
/
observed_allele_counts
.
astype
(
float
)
print
(
"
Fraction of each allele in this CV fold: %s
"
%
(
allele_fractions
,))
X_test_vector
=
X
[
test_coords
]
X_fold
=
X
.
copy
()
X_fold
[
test_coords
]
=
np
.
nan
empty_row_mask
=
np
.
isfinite
(
X_fold
).
sum
(
axis
=
1
)
==
0
ok_row_mask
=
~
empty_row_mask
ok_row_indices
=
np
.
where
(
ok_row_mask
)[
0
]
empty_col_mask
=
np
.
isfinite
(
X_fold
).
sum
(
axis
=
0
)
==
0
ok_col_mask
=
~
empty_col_mask
ok_col_indices
=
np
.
where
(
ok_col_mask
)[
0
]
ok_mesh
=
np
.
ix_
(
ok_row_indices
,
ok_col_indices
)
print
(
"
Dropping %d empty rows, %d empty columns
"
%
(
empty_row_mask
.
sum
(),
empty_col_mask
.
sum
()))
yield
(
X_fold
,
ok_mesh
,
test_coords
,
X_test_vector
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment