Skip to content
Snippets Groups Projects
Commit 5447695a authored by Tim O'Donnell's avatar Tim O'Donnell
Browse files

update docs

parent 832c0ac2
No related branches found
No related tags found
No related merge requests found
......@@ -7,8 +7,16 @@ $ pip install -r requirements.txt # for the first time you generate docs
$ make generate html
```
The above command will also regenerate `docs/package_readme/readme.generated.md`. The main
[README.md](../README.md) is symlinked to this file.
Documentation is written to the _build/ directory. These files should not be
checked into the repo.
We use the documentation system to generate the mhcflurry package level README.
To build this file, run:
```
$ make readme
```
This will write `docs/package_readme/readme.generated.rst`. The main
[README.rst](../README.rst) is symlinked to this file.
Many other files are also generated by the command above and output to
the _build/ directory. These files should not be checked into the repo.
\ No newline at end of file
[![Build Status](https://travis-ci.org/hammerlab/mhcflurry.svg?branch=master)](https://travis-ci.org/hammerlab/mhcflurry) [![Coverage Status](https://coveralls.io/repos/github/hammerlab/mhcflurry/badge.svg?branch=master)](https://coveralls.io/github/hammerlab/mhcflurry?branch=master)
# mhcflurry
Open source neural network models for peptide-MHC binding affinity prediction
MHCflurry is a Python package for peptide/MHC I binding affinity
prediction. It provides competitive accuracy with a fast, documented,
open source implementation.
You can download pre-trained MHCflurry models fit to affinity
measurements deposited in IEDB. See the
"downloads\_generation/models\_class1" directory in the repository for
the workflow used to train these predictors. Users with their own data
can also fit their own MHCflurry models.
Currently only allele-specific prediction is implemented, in which
separate models are trained for each allele. The released models
therefore support a fixed set of common class I alleles for which
sufficient published training data is available.
MHCflurry supports Python versions 2.7 and 3.4+. It uses the Keras
neural network library via either the Tensorflow or Theano backends.
GPUs may optionally be used for a generally modest speed improvement.
If you find MHCflurry useful in your research please cite:
> O'Donnell, T. et al., 2017. MHCflurry: open-source class I MHC binding
> affinity prediction. bioRxiv. Available at:
> <http://www.biorxiv.org/content/early/2017/08/09/174243>.
## Installation (pip)
Install the package:
> pip install mhcflurry
Then download our datasets and trained models:
> mhcflurry-downloads fetch
From a checkout you can run the unit tests with:
> pip install nose nosetests .
## Using conda
You can alternatively get up and running with a conda environment as
follows. Some users have reported that this can avoid problems
installing tensorflow.
> conda create -q -n mhcflurry-env python=3.6 'tensorflow\>=1.1.2'
> source activate mhcflurry-env
Then continue as above:
> pip install mhcflurry mhcflurry-downloads fetch
### Command-line usage
## Downloading models
Most users will use pre-trained MHCflurry models that we release. These
models are distributed separately from the source code and may be
downloaded with the following command:
We also release other "downloads," such as curated training data and
some experimental models. To see what you have downloaded, run:
## mhcflurry-predict
The "mhcflurry-predict" command generates predictions from the
command-line. It defaults to using the pre-trained models you downloaded
above but this can be customized with the "--models" argument. See
"mhcflurry-predict -h" for details.
```
> $ mhcflurry-predict --alleles HLA-A0201 HLA-A0301 --peptides SIINFEKL
> SIINFEKD SIINFEKQ
> allele,peptide,mhcflurry\_prediction,mhcflurry\_prediction\_low,mhcflurry\_prediction\_high
> HLA-A0201,SIINFEKL,5326.541919062165,3757.86675352994,7461.37693353508
> HLA-A0201,SIINFEKD,18763.70298522213,13140.82000240037,23269.82139560844
> HLA-A0201,SIINFEKQ,18620.10057358322,13096.425874678192,23223.148184869413
> HLA-A0301,SIINFEKL,24481.726678691946,21035.52779725433,27245.371837497867
> HLA-A0301,SIINFEKD,24687.529360239587,21582.590014592537,27749.39869616437
> HLA-A0301,SIINFEKQ,25923.062203902562,23522.5793450799,28079.456657427705
```
The predictions returned are affinities (KD) in nM. The
"prediction\_low" and "prediction\_high" fields give the 5-95 percentile
predictions across the models in the ensemble. The predictions above
were generated with MHCflurry 0.9.2.
Your exact predictions may vary slightly from these (up to about 1 nM)
depending on the Keras backend in use and other numerical details.
Different versions of MHCflurry can of course give results considerably
different from these.
You can also specify the input and output as CSV files. Run
"mhcflurry-predict -h" for details.
## Fitting your own models
### Library usage
The MHCflurry Python API exposes additional options and features beyond
those supported by the commandline tools. This tutorial gives a basic
overview of the most important functionality. See the API Documentation
for further details.
The "Class1AffinityPredictor" class is the primary user-facing
interface.
> \>\>\> import mhcflurry \>\>\> print("MHCflurry version: %s" %
> (mhcflurry.\_\_version\_\_)) MHCflurry version: 1.0.0 \>\>\> \>\>\> \#
> Load downloaded predictor \>\>\> predictor =
> mhcflurry.Class1AffinityPredictor.load() \>\>\>
> print(predictor.supported\_alleles) \['BoLA-6\*13:01',
> 'Eqca-1\*01:01', 'H-2-Db', 'H-2-Dd', 'H-2-Kb', 'H-2-Kd', 'H-2-Kk',
> 'H-2-Ld', 'HLA-A\*01:01', 'HLA-A\*02:01', 'HLA-A\*02:02',
> 'HLA-A\*02:03', 'HLA-A\*02:05', 'HLA-A\*02:06', 'HLA-A\*02:07',
> 'HLA-A\*02:11', 'HLA-A\*02:12', 'HLA-A\*02:16', 'HLA-A\*02:17',
> 'HLA-A\*02:19', 'HLA-A\*02:50', 'HLA-A\*03:01', 'HLA-A\*11:01',
> 'HLA-A\*23:01', 'HLA-A\*24:01', 'HLA-A\*24:02', 'HLA-A\*24:03',
> 'HLA-A\*25:01', 'HLA-A\*26:01', 'HLA-A\*26:02', 'HLA-A\*26:03',
> 'HLA-A\*29:02', 'HLA-A\*30:01', 'HLA-A\*30:02', 'HLA-A\*31:01',
> 'HLA-A\*32:01', 'HLA-A\*32:07', 'HLA-A\*33:01', 'HLA-A\*66:01',
> 'HLA-A\*68:01', 'HLA-A\*68:02', 'HLA-A\*68:23', 'HLA-A\*69:01',
> 'HLA-A\*80:01', 'HLA-B\*07:01', 'HLA-B\*07:02', 'HLA-B\*08:01',
> 'HLA-B\*08:02', 'HLA-B\*08:03', 'HLA-B\*14:02', 'HLA-B\*15:01',
> 'HLA-B\*15:02', 'HLA-B\*15:03', 'HLA-B\*15:09', 'HLA-B\*15:17',
> 'HLA-B\*15:42', 'HLA-B\*18:01', 'HLA-B\*27:01', 'HLA-B\*27:03',
> 'HLA-B\*27:04', 'HLA-B\*27:05', 'HLA-B\*27:06', 'HLA-B\*27:20',
> 'HLA-B\*35:01', 'HLA-B\*35:03', 'HLA-B\*35:08', 'HLA-B\*37:01',
> 'HLA-B\*38:01', 'HLA-B\*39:01', 'HLA-B\*40:01', 'HLA-B\*40:02',
> 'HLA-B\*42:01', 'HLA-B\*44:01', 'HLA-B\*44:02', 'HLA-B\*44:03',
> 'HLA-B\*45:01', 'HLA-B\*45:06', 'HLA-B\*46:01', 'HLA-B\*48:01',
> 'HLA-B\*51:01', 'HLA-B\*53:01', 'HLA-B\*54:01', 'HLA-B\*57:01',
> 'HLA-B\*58:01', 'HLA-B\*73:01', 'HLA-B\*83:01', 'HLA-C\*03:03',
> 'HLA-C\*03:04', 'HLA-C\*04:01', 'HLA-C\*05:01', 'HLA-C\*06:02',
> 'HLA-C\*07:01', 'HLA-C\*07:02', 'HLA-C\*08:02', 'HLA-C\*12:03',
> 'HLA-C\*14:02', 'HLA-C\*15:02', 'Mamu-A\*01:01', 'Mamu-A\*02:01',
> 'Mamu-A\*02:0102', 'Mamu-A\*07:01', 'Mamu-A\*07:0103',
> 'Mamu-A\*11:01', 'Mamu-A\*22:01', 'Mamu-A\*26:01', 'Mamu-B\*01:01',
> 'Mamu-B\*03:01', 'Mamu-B\*08:01', 'Mamu-B\*10:01', 'Mamu-B\*17:01',
> 'Mamu-B\*17:04', 'Mamu-B\*39:01', 'Mamu-B\*52:01', 'Mamu-B\*66:01',
> 'Mamu-B\*83:01', 'Mamu-B\*87:01', 'Patr-A\*01:01', 'Patr-A\*03:01',
> 'Patr-A\*04:01', 'Patr-A\*07:01', 'Patr-A\*09:01', 'Patr-B\*01:01',
> 'Patr-B\*13:01', 'Patr-B\*24:01'\]
>
> \# coding: utf-8
>
> \# In\[22\]:
>
> import pandas import numpy import seaborn import logging from
> matplotlib import pyplot
>
> import mhcflurry
>
> \# \# Download data and models
>
> \# In\[2\]:
>
> get\_ipython().system('mhcflurry-downloads fetch')
>
> \# \# Making predictions with Class1AffinityPredictor
>
> \# In\[3\]:
>
> help(mhcflurry.Class1AffinityPredictor)
>
> \# In\[4\]:
>
> downloaded\_predictor = mhcflurry.Class1AffinityPredictor.load()
>
> \# In\[5\]:
>
> downloaded\_predictor.predict(allele="HLA-A0201",
> peptides=\["SIINFEKL", "SIINFEQL"\])
>
> \# In\[6\]:
>
> downloaded\_predictor.predict\_to\_dataframe(allele="HLA-A0201",
> peptides=\["SIINFEKL", "SIINFEQL"\])
>
> \# In\[7\]:
>
> downloaded\_predictor.predict\_to\_dataframe(alleles=\["HLA-A0201",
> "HLA-B\*57:01"\], peptides=\["SIINFEKL", "SIINFEQL"\])
>
> \# In\[8\]:
>
> - downloaded\_predictor.predict\_to\_dataframe(
> allele="HLA-A0201", peptides=\["SIINFEKL", "SIINFEQL"\],
> include\_individual\_model\_predictions=True)
>
> \# In\[9\]:
>
> - downloaded\_predictor.predict\_to\_dataframe(
> allele="HLA-A0201", peptides=\["SIINFEKL", "SIINFEQL",
> "TAAAALANGGGGGGGG"\], throw=False) \# Without throw=False, you'll
> get a ValueError for invalid peptides or alleles
>
> \# \# Instantiating a Class1AffinityPredictor from a saved model on
> disk
>
> \# In\[10\]:
>
> models\_dir = mhcflurry.downloads.get\_path("models\_class1",
> "models") models\_dir
>
> \# In\[11\]:
>
> \# This will be the same predictor we instantiated above. We're just
> being explicit about what models to load. downloaded\_predictor =
> mhcflurry.Class1AffinityPredictor.load(models\_dir)
> downloaded\_predictor.predict(\["SIINFEKL", "SIQNPEKP", "SYNFPEPI"\],
> allele="HLA-A0301")
>
> \# \# Fit a model: first load some data
>
> \# In\[12\]:
>
> \# This is the data the downloaded models were trained on data\_path =
> mhcflurry.downloads.get\_path("data\_curated",
> "curated\_training\_data.csv.bz2") data\_path
>
> \# In\[13\]:
>
> data\_df = pandas.read\_csv(data\_path) data\_df
>
> \# \# Fit a model: Low level Class1NeuralNetwork interface
>
> \# In\[14\]:
>
> \# We'll use mostly the default hyperparameters here. Could also
> specify them as kwargs. new\_model =
> mhcflurry.Class1NeuralNetwork(layer\_sizes=\[16\])
> new\_model.hyperparameters
>
> \# In\[16\]:
>
> - train\_data = data\_df.loc\[
> (data\_df.allele == "HLA-B\*57:01") & (data\_df.peptide.str.len()
> \>= 8) & (data\_df.peptide.str.len() \<= 15)
>
> \] get\_ipython().magic('time
> new\_model.fit(train\_data.peptide.values,
> train\_data.measurement\_value.values)')
>
> \# In\[17\]:
>
> new\_model.predict(\["SYNPEPII"\])
>
> \# \# Fit a model: high level Class1AffinityPredictor interface
>
> \# In\[18\]:
>
> affinity\_predictor = mhcflurry.Class1AffinityPredictor()
>
> \# This can be called any number of times, for example on different
> alleles, to build up the ensembles.
> affinity\_predictor.fit\_allele\_specific\_predictors( n\_models=1,
> architecture\_hyperparameters={"layer\_sizes": \[16\], "max\_epochs":
> 10}, peptides=train\_data.peptide.values,
> affinities=train\_data.measurement\_value.values,
> allele="HLA-B\*57:01", )
>
> \# In\[19\]:
>
> affinity\_predictor.predict(\["SYNPEPII"\], allele="HLA-B\*57:01")
>
> \# \# Save and restore the fit model
>
> \# In\[20\]:
>
> get\_ipython().system('mkdir /tmp/saved-affinity-predictor')
> affinity\_predictor.save("/tmp/saved-affinity-predictor")
> get\_ipython().system('ls /tmp/saved-affinity-predictor')
>
> \# In\[21\]:
>
> affinity\_predictor2 =
> mhcflurry.Class1AffinityPredictor.load("/tmp/saved-affinity-predictor")
> affinity\_predictor2.predict(\["SYNPEPII"\], allele="HLA-B\*57:01")
### Supported alleles and peptide lengths
Models released with the current version of MHCflurry (1.0.0) support
peptides of length 8-15 and the following 124 alleles:
> BoLA-6\*13:01, Eqca-1\*01:01, H-2-Db, H-2-Dd, H-2-Kb, H-2-Kd, H-2-Kk,
> H-2-Ld, HLA-A\*01:01, HLA-A\*02:01, HLA-A\*02:02, HLA-A\*02:03,
> HLA-A\*02:05, HLA-A\*02:06, HLA-A\*02:07, HLA-A\*02:11, HLA-A\*02:12,
> HLA-A\*02:16, HLA-A\*02:17, HLA-A\*02:19, HLA-A\*02:50, HLA-A\*03:01,
> HLA-A\*11:01, HLA-A\*23:01, HLA-A\*24:01, HLA-A\*24:02, HLA-A\*24:03,
> HLA-A\*25:01, HLA-A\*26:01, HLA-A\*26:02, HLA-A\*26:03, HLA-A\*29:02,
> HLA-A\*30:01, HLA-A\*30:02, HLA-A\*31:01, HLA-A\*32:01, HLA-A\*32:07,
> HLA-A\*33:01, HLA-A\*66:01, HLA-A\*68:01, HLA-A\*68:02, HLA-A\*68:23,
> HLA-A\*69:01, HLA-A\*80:01, HLA-B\*07:01, HLA-B\*07:02, HLA-B\*08:01,
> HLA-B\*08:02, HLA-B\*08:03, HLA-B\*14:02, HLA-B\*15:01, HLA-B\*15:02,
> HLA-B\*15:03, HLA-B\*15:09, HLA-B\*15:17, HLA-B\*15:42, HLA-B\*18:01,
> HLA-B\*27:01, HLA-B\*27:03, HLA-B\*27:04, HLA-B\*27:05, HLA-B\*27:06,
> HLA-B\*27:20, HLA-B\*35:01, HLA-B\*35:03, HLA-B\*35:08, HLA-B\*37:01,
> HLA-B\*38:01, HLA-B\*39:01, HLA-B\*40:01, HLA-B\*40:02, HLA-B\*42:01,
> HLA-B\*44:01, HLA-B\*44:02, HLA-B\*44:03, HLA-B\*45:01, HLA-B\*45:06,
> HLA-B\*46:01, HLA-B\*48:01, HLA-B\*51:01, HLA-B\*53:01, HLA-B\*54:01,
> HLA-B\*57:01, HLA-B\*58:01, HLA-B\*73:01, HLA-B\*83:01, HLA-C\*03:03,
> HLA-C\*03:04, HLA-C\*04:01, HLA-C\*05:01, HLA-C\*06:02, HLA-C\*07:01,
> HLA-C\*07:02, HLA-C\*08:02, HLA-C\*12:03, HLA-C\*14:02, HLA-C\*15:02,
> Mamu-A\*01:01, Mamu-A\*02:01, Mamu-A\*02:0102, Mamu-A\*07:01,
> Mamu-A\*07:0103, Mamu-A\*11:01, Mamu-A\*22:01, Mamu-A\*26:01,
> Mamu-B\*01:01, Mamu-B\*03:01, Mamu-B\*08:01, Mamu-B\*10:01,
> Mamu-B\*17:01, Mamu-B\*17:04, Mamu-B\*39:01, Mamu-B\*52:01,
> Mamu-B\*66:01, Mamu-B\*83:01, Mamu-B\*87:01, Patr-A\*01:01,
> Patr-A\*03:01, Patr-A\*04:01, Patr-A\*07:01, Patr-A\*09:01,
> Patr-B\*01:01, Patr-B\*13:01, Patr-B\*24:01
[![Build Status](https://travis-ci.org/hammerlab/mhcflurry.svg?branch=master)](https://travis-ci.org/hammerlab/mhcflurry) [![Coverage Status](https://coveralls.io/repos/github/hammerlab/mhcflurry/badge.svg?branch=master)](https://coveralls.io/github/hammerlab/mhcflurry?branch=master)
# mhcflurry
Open source neural network models for peptide-MHC binding affinity prediction
MHCflurry is a Python package for peptide/MHC I binding affinity
prediction. It provides competitive accuracy with a fast, documented,
open source implementation.
You can download pre-trained MHCflurry models fit to affinity
measurements deposited in IEDB. See the
"downloads_generation/models_class1" directory in the repository for
the workflow used to train these predictors. Users with their own data
can also fit their own MHCflurry models.
Currently only allele-specific prediction is implemented, in which
separate models are trained for each allele. The released models
therefore support a fixed set of common class I alleles for which
sufficient published training data is available.
MHCflurry supports Python versions 2.7 and 3.4+. It uses the Keras
neural network library via either the Tensorflow or Theano backends.
GPUs may optionally be used for a generally modest speed improvement.
If you find MHCflurry useful in your research please cite:
O'Donnell, T. et al., 2017. MHCflurry: open-source class I MHC
binding affinity prediction. bioRxiv. Available at:
http://www.biorxiv.org/content/early/2017/08/09/174243.
Installation (pip)
******************
Install the package:
pip install mhcflurry
Then download our datasets and trained models:
mhcflurry-downloads fetch
From a checkout you can run the unit tests with:
pip install nose
nosetests .
Using conda
***********
You can alternatively get up and running with a conda environment as
follows. Some users have reported that this can avoid problems
installing tensorflow.
conda create -q -n mhcflurry-env python=3.6 'tensorflow>=1.1.2'
source activate mhcflurry-env
Then continue as above:
pip install mhcflurry
mhcflurry-downloads fetch
Command-line usage
==================
Downloading models
******************
Most users will use pre-trained MHCflurry models that we release.
These models are distributed separately from the source code and may
be downloaded with the following command:
We also release other "downloads," such as curated training data and
some experimental models. To see what you have downloaded, run:
mhcflurry-predict
*****************
The "mhcflurry-predict" command generates predictions from the
command-line. It defaults to using the pre-trained models you
downloaded above but this can be customized with the "--models"
argument. See "mhcflurry-predict -h" for details.
$ mhcflurry-predict --alleles HLA-A0201 HLA-A0301 --peptides SIINFEKL SIINFEKD SIINFEKQ
allele,peptide,mhcflurry_prediction,mhcflurry_prediction_low,mhcflurry_prediction_high
HLA-A0201,SIINFEKL,5326.541919062165,3757.86675352994,7461.37693353508
HLA-A0201,SIINFEKD,18763.70298522213,13140.82000240037,23269.82139560844
HLA-A0201,SIINFEKQ,18620.10057358322,13096.425874678192,23223.148184869413
HLA-A0301,SIINFEKL,24481.726678691946,21035.52779725433,27245.371837497867
HLA-A0301,SIINFEKD,24687.529360239587,21582.590014592537,27749.39869616437
HLA-A0301,SIINFEKQ,25923.062203902562,23522.5793450799,28079.456657427705
The predictions returned are affinities (KD) in nM. The
"prediction_low" and "prediction_high" fields give the 5-95 percentile
predictions across the models in the ensemble. The predictions above
were generated with MHCflurry 0.9.2.
Your exact predictions may vary slightly from these (up to about 1 nM)
depending on the Keras backend in use and other numerical details.
Different versions of MHCflurry can of course give results
considerably different from these.
You can also specify the input and output as CSV files. Run
"mhcflurry-predict -h" for details.
Fitting your own models
***********************
Library usage
=============
The MHCflurry Python API exposes additional options and features
beyond those supported by the commandline tools. This tutorial gives a
basic overview of the most important functionality. See the API
Documentation for further details.
The "Class1AffinityPredictor" class is the primary user-facing
interface.
>>> import mhcflurry
>>> print("MHCflurry version: %s" % (mhcflurry.__version__))
MHCflurry version: 1.0.0
>>>
>>> # Load downloaded predictor
>>> predictor = mhcflurry.Class1AffinityPredictor.load()
>>> print(predictor.supported_alleles)
['BoLA-6*13:01', 'Eqca-1*01:01', 'H-2-Db', 'H-2-Dd', 'H-2-Kb', 'H-2-Kd', 'H-2-Kk', 'H-2-Ld', 'HLA-A*01:01', 'HLA-A*02:01', 'HLA-A*02:02', 'HLA-A*02:03', 'HLA-A*02:05', 'HLA-A*02:06', 'HLA-A*02:07', 'HLA-A*02:11', 'HLA-A*02:12', 'HLA-A*02:16', 'HLA-A*02:17', 'HLA-A*02:19', 'HLA-A*02:50', 'HLA-A*03:01', 'HLA-A*11:01', 'HLA-A*23:01', 'HLA-A*24:01', 'HLA-A*24:02', 'HLA-A*24:03', 'HLA-A*25:01', 'HLA-A*26:01', 'HLA-A*26:02', 'HLA-A*26:03', 'HLA-A*29:02', 'HLA-A*30:01', 'HLA-A*30:02', 'HLA-A*31:01', 'HLA-A*32:01', 'HLA-A*32:07', 'HLA-A*33:01', 'HLA-A*66:01', 'HLA-A*68:01', 'HLA-A*68:02', 'HLA-A*68:23', 'HLA-A*69:01', 'HLA-A*80:01', 'HLA-B*07:01', 'HLA-B*07:02', 'HLA-B*08:01', 'HLA-B*08:02', 'HLA-B*08:03', 'HLA-B*14:02', 'HLA-B*15:01', 'HLA-B*15:02', 'HLA-B*15:03', 'HLA-B*15:09', 'HLA-B*15:17', 'HLA-B*15:42', 'HLA-B*18:01', 'HLA-B*27:01', 'HLA-B*27:03', 'HLA-B*27:04', 'HLA-B*27:05', 'HLA-B*27:06', 'HLA-B*27:20', 'HLA-B*35:01', 'HLA-B*35:03', 'HLA-B*35:08', 'HLA-B*37:01', 'HLA-B*38:01', 'HLA-B*39:01', 'HLA-B*40:01', 'HLA-B*40:02', 'HLA-B*42:01', 'HLA-B*44:01', 'HLA-B*44:02', 'HLA-B*44:03', 'HLA-B*45:01', 'HLA-B*45:06', 'HLA-B*46:01', 'HLA-B*48:01', 'HLA-B*51:01', 'HLA-B*53:01', 'HLA-B*54:01', 'HLA-B*57:01', 'HLA-B*58:01', 'HLA-B*73:01', 'HLA-B*83:01', 'HLA-C*03:03', 'HLA-C*03:04', 'HLA-C*04:01', 'HLA-C*05:01', 'HLA-C*06:02', 'HLA-C*07:01', 'HLA-C*07:02', 'HLA-C*08:02', 'HLA-C*12:03', 'HLA-C*14:02', 'HLA-C*15:02', 'Mamu-A*01:01', 'Mamu-A*02:01', 'Mamu-A*02:0102', 'Mamu-A*07:01', 'Mamu-A*07:0103', 'Mamu-A*11:01', 'Mamu-A*22:01', 'Mamu-A*26:01', 'Mamu-B*01:01', 'Mamu-B*03:01', 'Mamu-B*08:01', 'Mamu-B*10:01', 'Mamu-B*17:01', 'Mamu-B*17:04', 'Mamu-B*39:01', 'Mamu-B*52:01', 'Mamu-B*66:01', 'Mamu-B*83:01', 'Mamu-B*87:01', 'Patr-A*01:01', 'Patr-A*03:01', 'Patr-A*04:01', 'Patr-A*07:01', 'Patr-A*09:01', 'Patr-B*01:01', 'Patr-B*13:01', 'Patr-B*24:01']
# coding: utf-8
# In[22]:
import pandas
import numpy
import seaborn
import logging
from matplotlib import pyplot
import mhcflurry
# # Download data and models
# In[2]:
get_ipython().system('mhcflurry-downloads fetch')
# # Making predictions with `Class1AffinityPredictor`
# In[3]:
help(mhcflurry.Class1AffinityPredictor)
# In[4]:
downloaded_predictor = mhcflurry.Class1AffinityPredictor.load()
# In[5]:
downloaded_predictor.predict(allele="HLA-A0201", peptides=["SIINFEKL", "SIINFEQL"])
# In[6]:
downloaded_predictor.predict_to_dataframe(allele="HLA-A0201", peptides=["SIINFEKL", "SIINFEQL"])
# In[7]:
downloaded_predictor.predict_to_dataframe(alleles=["HLA-A0201", "HLA-B*57:01"], peptides=["SIINFEKL", "SIINFEQL"])
# In[8]:
downloaded_predictor.predict_to_dataframe(
allele="HLA-A0201",
peptides=["SIINFEKL", "SIINFEQL"],
include_individual_model_predictions=True)
# In[9]:
downloaded_predictor.predict_to_dataframe(
allele="HLA-A0201",
peptides=["SIINFEKL", "SIINFEQL", "TAAAALANGGGGGGGG"],
throw=False) # Without throw=False, you'll get a ValueError for invalid peptides or alleles
# # Instantiating a `Class1AffinityPredictor` from a saved model on disk
# In[10]:
models_dir = mhcflurry.downloads.get_path("models_class1", "models")
models_dir
# In[11]:
# This will be the same predictor we instantiated above. We're just being explicit about what models to load.
downloaded_predictor = mhcflurry.Class1AffinityPredictor.load(models_dir)
downloaded_predictor.predict(["SIINFEKL", "SIQNPEKP", "SYNFPEPI"], allele="HLA-A0301")
# # Fit a model: first load some data
# In[12]:
# This is the data the downloaded models were trained on
data_path = mhcflurry.downloads.get_path("data_curated", "curated_training_data.csv.bz2")
data_path
# In[13]:
data_df = pandas.read_csv(data_path)
data_df
# # Fit a model: Low level `Class1NeuralNetwork` interface
# In[14]:
# We'll use mostly the default hyperparameters here. Could also specify them as kwargs.
new_model = mhcflurry.Class1NeuralNetwork(layer_sizes=[16])
new_model.hyperparameters
# In[16]:
train_data = data_df.loc[
(data_df.allele == "HLA-B*57:01") &
(data_df.peptide.str.len() >= 8) &
(data_df.peptide.str.len() <= 15)
]
get_ipython().magic('time new_model.fit(train_data.peptide.values, train_data.measurement_value.values)')
# In[17]:
new_model.predict(["SYNPEPII"])
# # Fit a model: high level `Class1AffinityPredictor` interface
# In[18]:
affinity_predictor = mhcflurry.Class1AffinityPredictor()
# This can be called any number of times, for example on different alleles, to build up the ensembles.
affinity_predictor.fit_allele_specific_predictors(
n_models=1,
architecture_hyperparameters={"layer_sizes": [16], "max_epochs": 10},
peptides=train_data.peptide.values,
affinities=train_data.measurement_value.values,
allele="HLA-B*57:01",
)
# In[19]:
affinity_predictor.predict(["SYNPEPII"], allele="HLA-B*57:01")
# # Save and restore the fit model
# In[20]:
get_ipython().system('mkdir /tmp/saved-affinity-predictor')
affinity_predictor.save("/tmp/saved-affinity-predictor")
get_ipython().system('ls /tmp/saved-affinity-predictor')
# In[21]:
affinity_predictor2 = mhcflurry.Class1AffinityPredictor.load("/tmp/saved-affinity-predictor")
affinity_predictor2.predict(["SYNPEPII"], allele="HLA-B*57:01")
Supported alleles and peptide lengths
=====================================
Models released with the current version of MHCflurry (1.0.0) support
peptides of length 8-15 and the following 124 alleles:
BoLA-6*13:01, Eqca-1*01:01, H-2-Db, H-2-Dd, H-2-Kb, H-2-Kd, H-2-Kk,
H-2-Ld, HLA-A*01:01, HLA-A*02:01, HLA-A*02:02, HLA-A*02:03,
HLA-A*02:05, HLA-A*02:06, HLA-A*02:07, HLA-A*02:11, HLA-A*02:12,
HLA-A*02:16, HLA-A*02:17, HLA-A*02:19, HLA-A*02:50, HLA-A*03:01,
HLA-A*11:01, HLA-A*23:01, HLA-A*24:01, HLA-A*24:02, HLA-A*24:03,
HLA-A*25:01, HLA-A*26:01, HLA-A*26:02, HLA-A*26:03, HLA-A*29:02,
HLA-A*30:01, HLA-A*30:02, HLA-A*31:01, HLA-A*32:01, HLA-A*32:07,
HLA-A*33:01, HLA-A*66:01, HLA-A*68:01, HLA-A*68:02, HLA-A*68:23,
HLA-A*69:01, HLA-A*80:01, HLA-B*07:01, HLA-B*07:02, HLA-B*08:01,
HLA-B*08:02, HLA-B*08:03, HLA-B*14:02, HLA-B*15:01, HLA-B*15:02,
HLA-B*15:03, HLA-B*15:09, HLA-B*15:17, HLA-B*15:42, HLA-B*18:01,
HLA-B*27:01, HLA-B*27:03, HLA-B*27:04, HLA-B*27:05, HLA-B*27:06,
HLA-B*27:20, HLA-B*35:01, HLA-B*35:03, HLA-B*35:08, HLA-B*37:01,
HLA-B*38:01, HLA-B*39:01, HLA-B*40:01, HLA-B*40:02, HLA-B*42:01,
HLA-B*44:01, HLA-B*44:02, HLA-B*44:03, HLA-B*45:01, HLA-B*45:06,
HLA-B*46:01, HLA-B*48:01, HLA-B*51:01, HLA-B*53:01, HLA-B*54:01,
HLA-B*57:01, HLA-B*58:01, HLA-B*73:01, HLA-B*83:01, HLA-C*03:03,
HLA-C*03:04, HLA-C*04:01, HLA-C*05:01, HLA-C*06:02, HLA-C*07:01,
HLA-C*07:02, HLA-C*08:02, HLA-C*12:03, HLA-C*14:02, HLA-C*15:02,
Mamu-A*01:01, Mamu-A*02:01, Mamu-A*02:0102, Mamu-A*07:01,
Mamu-A*07:0103, Mamu-A*11:01, Mamu-A*22:01, Mamu-A*26:01,
Mamu-B*01:01, Mamu-B*03:01, Mamu-B*08:01, Mamu-B*10:01, Mamu-B*17:01,
Mamu-B*17:04, Mamu-B*39:01, Mamu-B*52:01, Mamu-B*66:01, Mamu-B*83:01,
Mamu-B*87:01, Patr-A*01:01, Patr-A*03:01, Patr-A*04:01, Patr-A*07:01,
Patr-A*09:01, Patr-B*01:01, Patr-B*13:01, Patr-B*24:01
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment