Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
mhc_rank
Manage
Activity
Members
Labels
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Patrick Skillman-Lawrence
mhc_rank
Commits
52a88ace
Commit
52a88ace
authored
8 years ago
by
Alex Rubinsteyn
Browse files
Options
Downloads
Patches
Plain Diff
updates to dataset size sensitivity script
parent
f0fdbc98
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
mhcflurry/dataset.py
+2
-1
2 additions, 1 deletion
mhcflurry/dataset.py
mhcflurry/imputation_helpers.py
+3
-0
3 additions, 0 deletions
mhcflurry/imputation_helpers.py
script/mhcflurry-dataset-size-sensitivity.py
+88
-76
88 additions, 76 deletions
script/mhcflurry-dataset-size-sensitivity.py
with
93 additions
and
77 deletions
mhcflurry/dataset.py
+
2
−
1
View file @
52a88ace
...
...
@@ -382,7 +382,8 @@ class Dataset(object):
Get Dataset for a single allele
"""
if
allele_name
not
in
self
.
unique_alleles
():
raise
KeyError
(
"
Allele
'
%s
'
not found
"
%
(
allele_name
,))
raise
KeyError
(
"
Allele
'
%s
'
not found, available alleles: %s
"
%
(
allele_name
,
list
(
sorted
(
self
.
unique_alleles
()))))
df
=
self
.
to_dataframe
()
df_allele
=
df
[
df
.
allele
==
allele_name
]
return
self
.
__class__
(
df_allele
)
...
...
This diff is collapsed.
Click to expand it.
mhcflurry/imputation_helpers.py
+
3
−
0
View file @
52a88ace
...
...
@@ -25,6 +25,7 @@ from fancyimpute.iterative_svd import IterativeSVD
from
fancyimpute.simple_fill
import
SimpleFill
from
fancyimpute.soft_impute
import
SoftImpute
from
fancyimpute.mice
import
MICE
from
fancyimpute.biscaler
import
BiScaler
def
check_dense_pMHC_array
(
X
,
peptide_list
,
allele_list
):
...
...
@@ -134,6 +135,8 @@ def imputer_from_name(imputation_method_name, **kwargs):
kwargs
[
"
rank
"
]
=
kwargs
.
get
(
"
rank
"
,
10
)
return
IterativeSVD
(
**
kwargs
)
elif
imputation_method_name
==
"
svt
"
or
imputation_method_name
==
"
softimpute
"
:
kwargs
[
"
init_fill_method
"
]
=
kwargs
.
get
(
"
init_fill_method
"
,
"
min
"
)
kwargs
[
"
normalizer
"
]
=
kwargs
.
get
(
"
normalizer
"
,
BiScaler
())
return
SoftImpute
(
**
kwargs
)
elif
imputation_method_name
==
"
mean
"
:
return
SimpleFill
(
"
mean
"
,
**
kwargs
)
...
...
This diff is collapsed.
Click to expand it.
script/mhcflurry-dataset-size-sensitivity.py
+
88
−
76
View file @
52a88ace
...
...
@@ -70,6 +70,11 @@ parser.add_argument(
type
=
int
,
default
=
500
)
parser
.
add_argument
(
"
--min-observations-per-peptide
"
,
type
=
int
,
default
=
2
)
parser
.
add_argument
(
"
--sample-censored-affinities
"
,
default
=
False
,
...
...
@@ -86,6 +91,11 @@ parser.add_argument(
action
=
"
store_true
"
,
default
=
False
)
parser
.
add_argument
(
"
--pretraining-weight-decay
"
,
choices
=
(
"
exponential
"
,
"
quadratic
"
,
"
linear
"
),
default
=
"
quadratic
"
,
help
=
"
Rate at which weight of imputed samples decays
"
)
"""
parser.add_argument(
"
--remove-similar-peptides-from-test-data
"
,
...
...
@@ -111,11 +121,13 @@ def subsample_performance(
imputer
=
None
,
min_training_samples
=
20
,
max_training_samples
=
3000
,
min_observations_per_peptide
=
2
,
n_subsample_sizes
=
10
,
n_repeats_per_size
=
1
,
n_training_epochs
=
200
,
n_random_negative_samples
=
100
,
batch_size
=
32
,
pretrain_weight_decay_fn
=
lambda
t
:
np
.
exp
(
-
t
),
sample_censored_affinities
=
False
):
dataset_allele
=
dataset
.
get_allele
(
allele
)
...
...
@@ -151,7 +163,7 @@ def subsample_performance(
allele
=
allele
,
n_training_samples
=
n_train
,
imputation_method
=
imputer
,
min_observations_per_peptide
=
3
,
min_observations_per_peptide
=
min_observations_per_peptide
,
min_observations_per_allele
=
1
,
stratify_fn
=
stratify_by_binder_label
)
print
(
"
=== #%d/%d: Training model for %s with sample_size = %d/%d
"
%
(
...
...
@@ -226,13 +238,15 @@ if __name__ == "__main__":
args
=
parser
.
parse_args
()
base_filename
=
\
"
%s-vs-nsamples-hidden-%s-activation-%s-impute-%s-epochs-%d-embedding-%d
"
%
(
(
"
%s-vs-nsamples-hidden-%s-activation-%s
"
"
-impute-%s-epochs-%d-embedding-%d-pretrain-%s
"
)
%
(
args
.
allele
,
args
.
hidden_layer_size
,
args
.
activation
,
args
.
imputation_method
,
args
.
training_epochs
,
args
.
embedding_size
)
args
.
embedding_size
,
args
.
pretraining_weight_decay
)
csv_filename
=
base_filename
+
"
.csv
"
if
args
.
load_existing_data
:
...
...
@@ -244,6 +258,22 @@ if __name__ == "__main__":
def
make_model
():
return
predictor_from_args
(
allele_name
=
args
.
allele
,
args
=
args
)
if
args
.
pretraining_weight_decay
==
"
exponential
"
:
def
pretrain_weight_decay_fn
(
t
):
return
np
.
exp
(
-
t
)
elif
args
.
pretraining_weight_decay
==
"
quadratic
"
:
def
pretrain_weight_decay_fn
(
t
):
return
1.0
/
(
t
+
1
)
**
2.0
elif
args
.
pretraining_weight_decay
==
"
linear
"
:
def
pretrain_weight_decay_fn
(
t
):
return
1.0
/
(
t
+
1
)
else
:
raise
ValueError
(
"
Invalid weight decay schedule:
'
%s
'"
%
(
args
.
pretraining_weight_decay
))
results_df
=
subsample_performance
(
dataset
=
dataset
,
allele
=
args
.
allele
,
...
...
@@ -252,8 +282,10 @@ if __name__ == "__main__":
n_repeats_per_size
=
args
.
repeat
,
n_training_epochs
=
args
.
training_epochs
,
batch_size
=
args
.
batch_size
,
pretrain_weight_decay_fn
=
pretrain_weight_decay_fn
,
min_training_samples
=
args
.
min_training_samples
,
max_training_samples
=
args
.
max_training_samples
,
min_observations_per_peptide
=
args
.
min_observations_per_peptide
,
n_subsample_sizes
=
args
.
number_dataset_sizes
,
n_random_negative_samples
=
args
.
random_negative_samples
,
sample_censored_affinities
=
args
.
sample_censored_affinities
)
...
...
@@ -264,77 +296,57 @@ if __name__ == "__main__":
metrics
=
[
"
auc
"
,
"
f1
"
,
"
tau
"
]
if
args
.
seaborn_lmplot
:
for
score_name
in
metrics
:
seaborn
.
lmplot
(
data
=
results_df
,
x
=
"
num_samples
"
,
y
=
score_name
,
hue
=
"
impute
"
,
legend
=
True
,
fit_reg
=
True
,
logx
=
True
,
truncate
=
True
,
x_jitter
=
0.5
,
y_jitter
=
0.01
)
seaborn
.
plt
.
xlim
(
max
(
-
1
,
results_df
[
"
num_samples
"
].
min
()
-
2
),
results_df
[
"
num_samples
"
].
max
()
+
50
,
)
seaborn
.
plt
.
ylim
(
0
,
1
)
seaborn
.
plt
.
xlabel
(
"
# samples (subset of %s)
"
%
args
.
allele
)
seaborn
.
plt
.
ylabel
(
score_name
)
image_filename
=
"
%s-%s.png
"
%
(
base_filename
,
score_name
)
print
(
"
Writing image to %s
"
%
image_filename
)
seaborn
.
plt
.
savefig
(
image_filename
)
else
:
titles
=
{
"
tau
"
:
"
Kendall
'
s $
\\
tau$
"
,
"
auc
"
:
"
AUC
"
,
"
f1
"
:
"
$F_1$ score
"
}
pyplot
.
figure
(
figsize
=
(
6
,
4
))
seaborn
.
set_style
(
"
whitegrid
"
)
for
(
j
,
score_name
)
in
enumerate
(
metrics
):
ax
=
pyplot
.
subplot2grid
((
1
,
3
),
(
0
,
j
))
groups
=
results_df
.
groupby
([
"
num_samples
"
,
"
impute
"
])
groups_score
=
groups
[
score_name
].
mean
().
to_frame
().
reset_index
()
groups_score
[
"
std_error
"
]
=
\
groups
[
score_name
].
std
().
to_frame
().
reset_index
()[
score_name
]
for
impute
in
[
True
,
False
]:
sub
=
groups_score
[
groups_score
.
impute
==
impute
]
color
=
seaborn
.
get_color_cycle
()[
0
]
if
impute
else
seaborn
.
get_color_cycle
()[
1
]
pyplot
.
errorbar
(
x
=
sub
.
num_samples
.
values
,
y
=
sub
[
score_name
].
values
,
yerr
=
sub
.
std_error
.
values
,
label
=
(
"
with
"
if
impute
else
"
without
"
)
+
"
imputation
"
,
color
=
color
)
titles
=
{
"
tau
"
:
"
Kendall
'
s $
\\
tau$
"
,
"
auc
"
:
"
AUC
"
,
"
f1
"
:
"
$F_1$ score
"
}
pyplot
.
figure
(
figsize
=
(
6.5
,
3.5
))
seaborn
.
set_style
(
"
whitegrid
"
)
for
(
j
,
score_name
)
in
enumerate
(
metrics
):
ax
=
pyplot
.
subplot2grid
((
1
,
4
),
(
0
,
j
))
groups
=
results_df
.
groupby
([
"
num_samples
"
,
"
impute
"
])
groups_score
=
groups
[
score_name
].
mean
().
to_frame
().
reset_index
()
groups_score
[
"
std_error
"
]
=
\
groups
[
score_name
].
std
().
to_frame
().
reset_index
()[
score_name
]
for
impute
in
[
True
,
False
]:
sub
=
groups_score
[
groups_score
.
impute
==
impute
]
color
=
seaborn
.
get_color_cycle
()[
0
]
if
impute
else
seaborn
.
get_color_cycle
()[
1
]
pyplot
.
errorbar
(
x
=
sub
.
num_samples
.
values
,
y
=
sub
[
score_name
].
values
,
yerr
=
sub
.
std_error
.
values
,
label
=
(
"
with
"
if
impute
else
"
without
"
)
+
"
imputation
"
,
color
=
color
)
if
j
==
1
:
pyplot
.
xlabel
(
"
Training set size
"
)
pyplot
.
xscale
(
"
log
"
)
pyplot
.
title
(
titles
[
score_name
])
if
score_name
==
"
auc
"
:
pyplot
.
ylim
(
ymin
=
0.5
,
ymax
=
1.0
)
if
score_name
==
"
f1
"
:
pyplot
.
ylim
(
ymin
=
0
,
ymax
=
1
)
if
score_name
==
"
tau
"
:
pyplot
.
ylim
(
ymin
=
0
,
ymax
=
0.6
)
pyplot
.
yticks
(
np
.
arange
(
0
,
0.61
,
0.15
))
if
j
==
0
:
pyplot
.
legend
(
loc
=
(
-
0.1
,
0.05
),
fancybox
=
True
,
frameon
=
True
,
fontsize
=
"
small
"
)
pyplot
.
tight_layout
()
# Put the legend out of the figure
# pyplot.legend(
# bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0., fancybox=True, frameon=True)
image_filename
=
base_filename
+
"
.png
"
print
(
"
Writing PNG to %s
"
%
image_filename
)
pyplot
.
savefig
(
image_filename
)
pyplot
.
xscale
(
"
log
"
)
pyplot
.
title
(
titles
[
score_name
])
if
score_name
==
"
auc
"
:
pyplot
.
ylim
(
ymin
=
0.5
,
ymax
=
1.0
)
if
score_name
==
"
f1
"
:
pyplot
.
ylim
(
ymin
=
0
,
ymax
=
1
)
if
score_name
==
"
tau
"
:
pyplot
.
ylim
(
ymin
=
0
,
ymax
=
0.6
)
pyplot
.
yticks
(
np
.
arange
(
0
,
0.61
,
0.15
))
pyplot
.
legend
(
bbox_to_anchor
=
(
1.1
,
1
),
loc
=
2
,
borderaxespad
=
0.
,
fancybox
=
True
,
frameon
=
True
,
fontsize
=
"
small
"
)
pyplot
.
tight_layout
()
# Put the legend out of the figure
image_filename
=
base_filename
+
"
.png
"
print
(
"
Writing PNG to %s
"
%
image_filename
)
pyplot
.
savefig
(
image_filename
)
pdf_filename
=
base_filename
+
"
.pdf
"
print
(
"
Writing PDF to %s
"
%
pdf_filename
)
pyplot
.
savefig
(
pdf_filename
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment