Skip to content
Snippets Groups Projects
Commit 44bdd65b authored by Tim O'Donnell's avatar Tim O'Donnell
Browse files

fix

parent 2a735ae8
No related branches found
No related tags found
No related merge requests found
...@@ -48,7 +48,7 @@ base_hyperparameters = { ...@@ -48,7 +48,7 @@ base_hyperparameters = {
} }
grid = [] grid = []
for layer_sizes in [[1024, 512], [512, 512], [1024, 1024]]: for layer_sizes in [[512, 256], [1024, 512], [1024, 1024]]:
for l1 in [0.0, 0.0001, 0.001, 0.01]: for l1 in [0.0, 0.0001, 0.001, 0.01]:
new = deepcopy(base_hyperparameters) new = deepcopy(base_hyperparameters)
new["layer_sizes"] = layer_sizes new["layer_sizes"] = layer_sizes
......
...@@ -434,7 +434,7 @@ def train_model( ...@@ -434,7 +434,7 @@ def train_model(
train_peptides = EncodableSequences(train_data.peptide.values) train_peptides = EncodableSequences(train_data.peptide.values)
train_alleles = AlleleEncoding( train_alleles = AlleleEncoding(
train_data.allele.values, borrow_from=allele_encoding) train_data.allele.values, borrow_from=allele_encoding)
train_target = from_ic50(train_data.measurement_value) train_target = from_ic50(train_data.measurement_value.values)
model = Class1NeuralNetwork(**hyperparameters) model = Class1NeuralNetwork(**hyperparameters)
...@@ -468,6 +468,7 @@ def train_model( ...@@ -468,6 +468,7 @@ def train_model(
peptides=peptides, peptides=peptides,
affinities=affinities, affinities=affinities,
allele_encoding=alleles) allele_encoding=alleles)
fit_time = time.time() - start fit_time = time.time() - start
start = time.time() start = time.time()
predictions = model.predict( predictions = model.predict(
...@@ -484,7 +485,7 @@ def train_model( ...@@ -484,7 +485,7 @@ def train_model(
mask = train_data.measurement_inequality == inequality mask = train_data.measurement_inequality == inequality
predictions[mask.values] = func( predictions[mask.values] = func(
predictions[mask.values], predictions[mask.values],
train_data.loc[mask.values].measurement_value.values) train_data.loc[mask].measurement_value.values)
score_mse = numpy.mean((from_ic50(predictions) - train_target)**2) score_mse = numpy.mean((from_ic50(predictions) - train_target)**2)
score_time = time.time() - start score_time = time.time() - start
print( print(
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment