Skip to content
Snippets Groups Projects
Commit 4241da44 authored by Tim O'Donnell's avatar Tim O'Donnell
Browse files

fix

parent cd8e0e82
No related merge requests found
......@@ -74,6 +74,7 @@ do
--allele $(bzcat "$MODELS_DIR/train_data.csv.bz2" | cut -f 1 -d , | grep -v allele | uniq | sort | uniq) \
--verbosity 1 \
--worker-log-dir "$SCRATCH_DIR/$DOWNLOAD_NAME" \
--prediction-batch-size 524288 \
--cluster-parallelism \
--cluster-submit-command bsub \
--cluster-results-workdir ~/mhcflurry-scratch \
......
......@@ -18,6 +18,7 @@ export PYTHONUNBUFFERED=1
export KMP_SETTINGS=1
set -e
set -x
free -m
module add cuda/10.0.130 cudnn/7.1.1
......
......@@ -80,6 +80,11 @@ parser.add_argument(
nargs=2,
help="Min and max peptide length to calibrate, inclusive. "
"Default: %(default)s")
parser.add_argument(
"--prediction-batch-size",
type=int,
default=4096,
help="Keras batch size for predictions")
parser.add_argument(
"--verbosity",
type=int,
......@@ -149,7 +154,10 @@ def run(argv=sys.argv[1:]):
GLOBAL_DATA["args"] = {
'motif_summary': args.motif_summary,
'summary_top_peptide_fractions': args.summary_top_peptide_fraction,
'verbose': args.verbosity > 0
'verbose': args.verbosity > 0,
'model_kwargs': {
'batch_size': args.prediction_batch_size,
}
}
del encoded_peptides
......@@ -222,13 +230,20 @@ def calibrate_percentile_ranks(
peptides=None,
motif_summary=False,
summary_top_peptide_fractions=[0.001],
verbose=False):
verbose=False,
model_kwargs={}):
if verbose:
print("Calibrating", allele)
start = time.time()
summary_results = predictor.calibrate_percentile_ranks(
peptides=peptides,
alleles=[allele],
motif_summary=motif_summary,
summary_top_peptide_fractions=summary_top_peptide_fractions,
verbose=verbose)
verbose=verbose,
model_kwargs=model_kwargs)
if verbose:
print("Done calibrating", allele, "in", time.time() - start, "sec")
transforms = {
allele: predictor.allele_to_percent_rank_transform[allele],
}
......
......@@ -1157,7 +1157,8 @@ class Class1AffinityPredictor(object):
bins=None,
motif_summary=False,
summary_top_peptide_fractions=[0.001],
verbose=False):
verbose=False,
model_kwargs={}):
"""
Compute the cumulative distribution of ic50 values for a set of alleles
over a large universe of random peptides, to enable computing quantiles in
......@@ -1208,7 +1209,8 @@ class Class1AffinityPredictor(object):
length_distributions = None
for (i, allele) in enumerate(alleles):
start = time.time()
predictions = self.predict(encoded_peptides, allele=allele)
predictions = self.predict(
encoded_peptides, allele=allele, model_kwargs=model_kwargs)
if verbose:
elapsed = time.time() - start
print(
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment