Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
mhc_rank
Manage
Activity
Members
Labels
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Patrick Skillman-Lawrence
mhc_rank
Commits
40d12464
Commit
40d12464
authored
7 years ago
by
Tim O'Donnell
Browse files
Options
Downloads
Patches
Plain Diff
test
parent
19b6a156
Loading
Loading
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
docs/readme.template.txt
+315
-0
315 additions, 0 deletions
docs/readme.template.txt
with
315 additions
and
0 deletions
docs/readme.template.txt
0 → 100644
+
315
−
0
View file @
40d12464
MHCflurry is a Python package for peptide/MHC I binding affinity
prediction. It provides competitive accuracy with a fast, documented,
open source implementation.
You can download pre-trained MHCflurry models fit to affinity
measurements deposited in IEDB. See the
"downloads_generation/models_class1" directory in the repository for
the workflow used to train these predictors. Users with their own data
can also fit their own MHCflurry models.
Currently only allele-specific prediction is implemented, in which
separate models are trained for each allele. The released models
therefore support a fixed set of common class I alleles for which
sufficient published training data is available.
MHCflurry supports Python versions 2.7 and 3.4+. It uses the Keras
neural network library via either the Tensorflow or Theano backends.
GPUs may optionally be used for a generally modest speed improvement.
If you find MHCflurry useful in your research please cite:
O'Donnell, T. et al., 2017. MHCflurry: open-source class I MHC
binding affinity prediction. bioRxiv. Available at:
http://www.biorxiv.org/content/early/2017/08/09/174243.
Installation (pip)
******************
Install the package:
pip install mhcflurry
Then download our datasets and trained models:
mhcflurry-downloads fetch
From a checkout you can run the unit tests with:
pip install nose
nosetests .
Using conda
***********
You can alternatively get up and running with a conda environment as
follows. Some users have reported that this can avoid problems
installing tensorflow.
conda create -q -n mhcflurry-env python=3.6 'tensorflow>=1.1.2'
source activate mhcflurry-env
Then continue as above:
pip install mhcflurry
mhcflurry-downloads fetch
Command-line usage
==================
Downloading models
******************
Most users will use pre-trained MHCflurry models that we release.
These models are distributed separately from the source code and may
be downloaded with the following command:
We also release other "downloads," such as curated training data and
some experimental models. To see what you have downloaded, run:
mhcflurry-predict
*****************
The "mhcflurry-predict" command generates predictions from the
command-line. It defaults to using the pre-trained models you
downloaded above but this can be customized with the "--models"
argument. See "mhcflurry-predict -h" for details.
$ mhcflurry-predict --alleles HLA-A0201 HLA-A0301 --peptides SIINFEKL SIINFEKD SIINFEKQ
allele,peptide,mhcflurry_prediction,mhcflurry_prediction_low,mhcflurry_prediction_high
HLA-A0201,SIINFEKL,5326.541919062165,3757.86675352994,7461.37693353508
HLA-A0201,SIINFEKD,18763.70298522213,13140.82000240037,23269.82139560844
HLA-A0201,SIINFEKQ,18620.10057358322,13096.425874678192,23223.148184869413
HLA-A0301,SIINFEKL,24481.726678691946,21035.52779725433,27245.371837497867
HLA-A0301,SIINFEKD,24687.529360239587,21582.590014592537,27749.39869616437
HLA-A0301,SIINFEKQ,25923.062203902562,23522.5793450799,28079.456657427705
The predictions returned are affinities (KD) in nM. The
"prediction_low" and "prediction_high" fields give the 5-95 percentile
predictions across the models in the ensemble. The predictions above
were generated with MHCflurry 0.9.2.
Your exact predictions may vary slightly from these (up to about 1 nM)
depending on the Keras backend in use and other numerical details.
Different versions of MHCflurry can of course give results
considerably different from these.
You can also specify the input and output as CSV files. Run
"mhcflurry-predict -h" for details.
Fitting your own models
***********************
Library usage
=============
The MHCflurry Python API exposes additional options and features
beyond those supported by the commandline tools. This tutorial gives a
basic overview of the most important functionality. See the API
Documentation for further details.
The "Class1AffinityPredictor" class is the primary user-facing
interface.
>>> import mhcflurry
>>> print("MHCflurry version: %s" % (mhcflurry.__version__))
MHCflurry version: 1.0.0
>>>
>>> # Load downloaded predictor
>>> predictor = mhcflurry.Class1AffinityPredictor.load()
>>> print(predictor.supported_alleles)
['BoLA-6*13:01', 'Eqca-1*01:01', 'H-2-Db', 'H-2-Dd', 'H-2-Kb', 'H-2-Kd', 'H-2-Kk', 'H-2-Ld', 'HLA-A*01:01', 'HLA-A*02:01', 'HLA-A*02:02', 'HLA-A*02:03', 'HLA-A*02:05', 'HLA-A*02:06', 'HLA-A*02:07', 'HLA-A*02:11', 'HLA-A*02:12', 'HLA-A*02:16', 'HLA-A*02:17', 'HLA-A*02:19', 'HLA-A*02:50', 'HLA-A*03:01', 'HLA-A*11:01', 'HLA-A*23:01', 'HLA-A*24:01', 'HLA-A*24:02', 'HLA-A*24:03', 'HLA-A*25:01', 'HLA-A*26:01', 'HLA-A*26:02', 'HLA-A*26:03', 'HLA-A*29:02', 'HLA-A*30:01', 'HLA-A*30:02', 'HLA-A*31:01', 'HLA-A*32:01', 'HLA-A*32:07', 'HLA-A*33:01', 'HLA-A*66:01', 'HLA-A*68:01', 'HLA-A*68:02', 'HLA-A*68:23', 'HLA-A*69:01', 'HLA-A*80:01', 'HLA-B*07:01', 'HLA-B*07:02', 'HLA-B*08:01', 'HLA-B*08:02', 'HLA-B*08:03', 'HLA-B*14:02', 'HLA-B*15:01', 'HLA-B*15:02', 'HLA-B*15:03', 'HLA-B*15:09', 'HLA-B*15:17', 'HLA-B*15:42', 'HLA-B*18:01', 'HLA-B*27:01', 'HLA-B*27:03', 'HLA-B*27:04', 'HLA-B*27:05', 'HLA-B*27:06', 'HLA-B*27:20', 'HLA-B*35:01', 'HLA-B*35:03', 'HLA-B*35:08', 'HLA-B*37:01', 'HLA-B*38:01', 'HLA-B*39:01', 'HLA-B*40:01', 'HLA-B*40:02', 'HLA-B*42:01', 'HLA-B*44:01', 'HLA-B*44:02', 'HLA-B*44:03', 'HLA-B*45:01', 'HLA-B*45:06', 'HLA-B*46:01', 'HLA-B*48:01', 'HLA-B*51:01', 'HLA-B*53:01', 'HLA-B*54:01', 'HLA-B*57:01', 'HLA-B*58:01', 'HLA-B*73:01', 'HLA-B*83:01', 'HLA-C*03:03', 'HLA-C*03:04', 'HLA-C*04:01', 'HLA-C*05:01', 'HLA-C*06:02', 'HLA-C*07:01', 'HLA-C*07:02', 'HLA-C*08:02', 'HLA-C*12:03', 'HLA-C*14:02', 'HLA-C*15:02', 'Mamu-A*01:01', 'Mamu-A*02:01', 'Mamu-A*02:0102', 'Mamu-A*07:01', 'Mamu-A*07:0103', 'Mamu-A*11:01', 'Mamu-A*22:01', 'Mamu-A*26:01', 'Mamu-B*01:01', 'Mamu-B*03:01', 'Mamu-B*08:01', 'Mamu-B*10:01', 'Mamu-B*17:01', 'Mamu-B*17:04', 'Mamu-B*39:01', 'Mamu-B*52:01', 'Mamu-B*66:01', 'Mamu-B*83:01', 'Mamu-B*87:01', 'Patr-A*01:01', 'Patr-A*03:01', 'Patr-A*04:01', 'Patr-A*07:01', 'Patr-A*09:01', 'Patr-B*01:01', 'Patr-B*13:01', 'Patr-B*24:01']
# coding: utf-8
# In[22]:
import pandas
import numpy
import seaborn
import logging
from matplotlib import pyplot
import mhcflurry
# # Download data and models
# In[2]:
get_ipython().system('mhcflurry-downloads fetch')
# # Making predictions with `Class1AffinityPredictor`
# In[3]:
help(mhcflurry.Class1AffinityPredictor)
# In[4]:
downloaded_predictor = mhcflurry.Class1AffinityPredictor.load()
# In[5]:
downloaded_predictor.predict(allele="HLA-A0201", peptides=["SIINFEKL", "SIINFEQL"])
# In[6]:
downloaded_predictor.predict_to_dataframe(allele="HLA-A0201", peptides=["SIINFEKL", "SIINFEQL"])
# In[7]:
downloaded_predictor.predict_to_dataframe(alleles=["HLA-A0201", "HLA-B*57:01"], peptides=["SIINFEKL", "SIINFEQL"])
# In[8]:
downloaded_predictor.predict_to_dataframe(
allele="HLA-A0201",
peptides=["SIINFEKL", "SIINFEQL"],
include_individual_model_predictions=True)
# In[9]:
downloaded_predictor.predict_to_dataframe(
allele="HLA-A0201",
peptides=["SIINFEKL", "SIINFEQL", "TAAAALANGGGGGGGG"],
throw=False) # Without throw=False, you'll get a ValueError for invalid peptides or alleles
# # Instantiating a `Class1AffinityPredictor` from a saved model on disk
# In[10]:
models_dir = mhcflurry.downloads.get_path("models_class1", "models")
models_dir
# In[11]:
# This will be the same predictor we instantiated above. We're just being explicit about what models to load.
downloaded_predictor = mhcflurry.Class1AffinityPredictor.load(models_dir)
downloaded_predictor.predict(["SIINFEKL", "SIQNPEKP", "SYNFPEPI"], allele="HLA-A0301")
# # Fit a model: first load some data
# In[12]:
# This is the data the downloaded models were trained on
data_path = mhcflurry.downloads.get_path("data_curated", "curated_training_data.csv.bz2")
data_path
# In[13]:
data_df = pandas.read_csv(data_path)
data_df
# # Fit a model: Low level `Class1NeuralNetwork` interface
# In[14]:
# We'll use mostly the default hyperparameters here. Could also specify them as kwargs.
new_model = mhcflurry.Class1NeuralNetwork(layer_sizes=[16])
new_model.hyperparameters
# In[16]:
train_data = data_df.loc[
(data_df.allele == "HLA-B*57:01") &
(data_df.peptide.str.len() >= 8) &
(data_df.peptide.str.len() <= 15)
]
get_ipython().magic('time new_model.fit(train_data.peptide.values, train_data.measurement_value.values)')
# In[17]:
new_model.predict(["SYNPEPII"])
# # Fit a model: high level `Class1AffinityPredictor` interface
# In[18]:
affinity_predictor = mhcflurry.Class1AffinityPredictor()
# This can be called any number of times, for example on different alleles, to build up the ensembles.
affinity_predictor.fit_allele_specific_predictors(
n_models=1,
architecture_hyperparameters={"layer_sizes": [16], "max_epochs": 10},
peptides=train_data.peptide.values,
affinities=train_data.measurement_value.values,
allele="HLA-B*57:01",
)
# In[19]:
affinity_predictor.predict(["SYNPEPII"], allele="HLA-B*57:01")
# # Save and restore the fit model
# In[20]:
get_ipython().system('mkdir /tmp/saved-affinity-predictor')
affinity_predictor.save("/tmp/saved-affinity-predictor")
get_ipython().system('ls /tmp/saved-affinity-predictor')
# In[21]:
affinity_predictor2 = mhcflurry.Class1AffinityPredictor.load("/tmp/saved-affinity-predictor")
affinity_predictor2.predict(["SYNPEPII"], allele="HLA-B*57:01")
Supported alleles and peptide lengths
=====================================
Models released with the current version of MHCflurry (1.0.0) support
peptides of length 8-15 and the following 124 alleles:
BoLA-6*13:01, Eqca-1*01:01, H-2-Db, H-2-Dd, H-2-Kb, H-2-Kd, H-2-Kk,
H-2-Ld, HLA-A*01:01, HLA-A*02:01, HLA-A*02:02, HLA-A*02:03,
HLA-A*02:05, HLA-A*02:06, HLA-A*02:07, HLA-A*02:11, HLA-A*02:12,
HLA-A*02:16, HLA-A*02:17, HLA-A*02:19, HLA-A*02:50, HLA-A*03:01,
HLA-A*11:01, HLA-A*23:01, HLA-A*24:01, HLA-A*24:02, HLA-A*24:03,
HLA-A*25:01, HLA-A*26:01, HLA-A*26:02, HLA-A*26:03, HLA-A*29:02,
HLA-A*30:01, HLA-A*30:02, HLA-A*31:01, HLA-A*32:01, HLA-A*32:07,
HLA-A*33:01, HLA-A*66:01, HLA-A*68:01, HLA-A*68:02, HLA-A*68:23,
HLA-A*69:01, HLA-A*80:01, HLA-B*07:01, HLA-B*07:02, HLA-B*08:01,
HLA-B*08:02, HLA-B*08:03, HLA-B*14:02, HLA-B*15:01, HLA-B*15:02,
HLA-B*15:03, HLA-B*15:09, HLA-B*15:17, HLA-B*15:42, HLA-B*18:01,
HLA-B*27:01, HLA-B*27:03, HLA-B*27:04, HLA-B*27:05, HLA-B*27:06,
HLA-B*27:20, HLA-B*35:01, HLA-B*35:03, HLA-B*35:08, HLA-B*37:01,
HLA-B*38:01, HLA-B*39:01, HLA-B*40:01, HLA-B*40:02, HLA-B*42:01,
HLA-B*44:01, HLA-B*44:02, HLA-B*44:03, HLA-B*45:01, HLA-B*45:06,
HLA-B*46:01, HLA-B*48:01, HLA-B*51:01, HLA-B*53:01, HLA-B*54:01,
HLA-B*57:01, HLA-B*58:01, HLA-B*73:01, HLA-B*83:01, HLA-C*03:03,
HLA-C*03:04, HLA-C*04:01, HLA-C*05:01, HLA-C*06:02, HLA-C*07:01,
HLA-C*07:02, HLA-C*08:02, HLA-C*12:03, HLA-C*14:02, HLA-C*15:02,
Mamu-A*01:01, Mamu-A*02:01, Mamu-A*02:0102, Mamu-A*07:01,
Mamu-A*07:0103, Mamu-A*11:01, Mamu-A*22:01, Mamu-A*26:01,
Mamu-B*01:01, Mamu-B*03:01, Mamu-B*08:01, Mamu-B*10:01, Mamu-B*17:01,
Mamu-B*17:04, Mamu-B*39:01, Mamu-B*52:01, Mamu-B*66:01, Mamu-B*83:01,
Mamu-B*87:01, Patr-A*01:01, Patr-A*03:01, Patr-A*04:01, Patr-A*07:01,
Patr-A*09:01, Patr-B*01:01, Patr-B*13:01, Patr-B*24:01
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment