Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
mhc_rank
Manage
Activity
Members
Labels
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Patrick Skillman-Lawrence
mhc_rank
Commits
2e8dc426
Commit
2e8dc426
authored
5 years ago
by
Tim O'Donnell
Browse files
Options
Downloads
Patches
Plain Diff
working on ligandome
parent
0eb0a4e1
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
mhcflurry/class1_ligandome_predictor.py
+80
-42
80 additions, 42 deletions
mhcflurry/class1_ligandome_predictor.py
mhcflurry/custom_loss.py
+68
-8
68 additions, 8 deletions
mhcflurry/custom_loss.py
test/test_class1_ligandome_predictor.py
+75
-73
75 additions, 73 deletions
test/test_class1_ligandome_predictor.py
with
223 additions
and
123 deletions
mhcflurry/class1_ligandome_predictor.py
+
80
−
42
View file @
2e8dc426
...
@@ -5,11 +5,17 @@ import collections
...
@@ -5,11 +5,17 @@ import collections
from
functools
import
partial
from
functools
import
partial
import
numpy
import
numpy
import
pandas
from
.hyperparameters
import
HyperparameterDefaults
from
.hyperparameters
import
HyperparameterDefaults
from
.class1_neural_network
import
Class1NeuralNetwork
,
DEFAULT_PREDICT_BATCH_SIZE
from
.class1_neural_network
import
Class1NeuralNetwork
,
DEFAULT_PREDICT_BATCH_SIZE
from
.encodable_sequences
import
EncodableSequences
from
.encodable_sequences
import
EncodableSequences
from
.regression_target
import
from_ic50
,
to_ic50
from
.random_negative_peptides
import
RandomNegativePeptides
from
.custom_loss
import
(
MSEWithInequalities
,
MSEWithInequalitiesAndMultipleOutputs
,
MultiallelicMassSpecLoss
)
class
Class1LigandomePredictor
(
object
):
class
Class1LigandomePredictor
(
object
):
network_hyperparameter_defaults
=
HyperparameterDefaults
(
network_hyperparameter_defaults
=
HyperparameterDefaults
(
...
@@ -19,6 +25,8 @@ class Class1LigandomePredictor(object):
...
@@ -19,6 +25,8 @@ class Class1LigandomePredictor(object):
'
alignment_method
'
:
'
left_pad_centered_right_pad
'
,
'
alignment_method
'
:
'
left_pad_centered_right_pad
'
,
'
max_length
'
:
15
,
'
max_length
'
:
15
,
},
},
additional_dense_layers
=
[],
additional_dense_activation
=
"
sigmoid
"
,
)
)
"""
"""
Hyperparameters (and their default values) that affect the neural network
Hyperparameters (and their default values) that affect the neural network
...
@@ -29,9 +37,8 @@ class Class1LigandomePredictor(object):
...
@@ -29,9 +37,8 @@ class Class1LigandomePredictor(object):
max_epochs
=
500
,
max_epochs
=
500
,
validation_split
=
0.1
,
validation_split
=
0.1
,
early_stopping
=
True
,
early_stopping
=
True
,
minibatch_size
=
128
,
minibatch_size
=
128
,).
extend
(
random_negative_rate
=
0.0
,
RandomNegativePeptides
.
hyperparameter_defaults
random_negative_constant
=
0
,
)
)
"""
"""
Hyperparameters for neural network training.
Hyperparameters for neural network training.
...
@@ -47,7 +54,6 @@ class Class1LigandomePredictor(object):
...
@@ -47,7 +54,6 @@ class Class1LigandomePredictor(object):
compile_hyperparameter_defaults
=
HyperparameterDefaults
(
compile_hyperparameter_defaults
=
HyperparameterDefaults
(
loss_delta
=
0.2
,
loss_delta
=
0.2
,
loss_alpha
=
None
,
optimizer
=
"
rmsprop
"
,
optimizer
=
"
rmsprop
"
,
learning_rate
=
None
,
learning_rate
=
None
,
)
)
...
@@ -56,10 +62,18 @@ class Class1LigandomePredictor(object):
...
@@ -56,10 +62,18 @@ class Class1LigandomePredictor(object):
used.
used.
"""
"""
allele_features_hyperparameter_defaults
=
HyperparameterDefaults
(
allele_features_include_gene
=
True
,
)
"""
Allele feature hyperparameters.
"""
hyperparameter_defaults
=
network_hyperparameter_defaults
.
extend
(
hyperparameter_defaults
=
network_hyperparameter_defaults
.
extend
(
fit_hyperparameter_defaults
).
extend
(
fit_hyperparameter_defaults
).
extend
(
early_stopping_hyperparameter_defaults
).
extend
(
early_stopping_hyperparameter_defaults
).
extend
(
compile_hyperparameter_defaults
)
compile_hyperparameter_defaults
).
extend
(
allele_features_hyperparameter_defaults
)
def
__init__
(
def
__init__
(
self
,
self
,
...
@@ -87,8 +101,15 @@ class Class1LigandomePredictor(object):
...
@@ -87,8 +101,15 @@ class Class1LigandomePredictor(object):
@staticmethod
@staticmethod
def
make_network
(
pan_allele_class1_neural_networks
,
hyperparameters
):
def
make_network
(
pan_allele_class1_neural_networks
,
hyperparameters
):
import
keras.backend
as
K
import
keras.backend
as
K
from
keras.layers
import
Input
,
TimeDistributed
,
Lambda
,
Flatten
,
RepeatVector
,
concatenate
,
Dropout
,
Reshape
,
Embedding
from
keras.layers
import
(
from
keras.activations
import
sigmoid
Input
,
TimeDistributed
,
Dense
,
Flatten
,
RepeatVector
,
concatenate
,
Reshape
,
Embedding
)
from
keras.models
import
Model
from
keras.models
import
Model
networks
=
[
model
.
network
()
for
model
in
pan_allele_class1_neural_networks
]
networks
=
[
model
.
network
()
for
model
in
pan_allele_class1_neural_networks
]
...
@@ -163,39 +184,28 @@ class Class1LigandomePredictor(object):
...
@@ -163,39 +184,28 @@ class Class1LigandomePredictor(object):
layer_name_to_new_node
[
layer
.
name
]
=
node
layer_name_to_new_node
[
layer
.
name
]
=
node
affinity_predictor_output
=
node
for
(
i
,
layer_size
)
in
enumerate
(
hyperparameters
[
'
additional_dense_layers
'
]):
layer
=
Dense
(
layer_size
,
activation
=
hyperparameters
[
'
additional_dense_activation
'
])
lifted
=
TimeDistributed
(
layer
)
node
=
lifted
(
node
)
layer
=
Dense
(
1
,
activation
=
"
sigmoid
"
)
lifted
=
TimeDistributed
(
layer
)
ligandome_output
=
lifted
(
node
)
network
=
Model
(
network
=
Model
(
inputs
=
[
input_peptides
,
input_alleles
],
inputs
=
[
input_peptides
,
input_alleles
],
outputs
=
node
,
outputs
=
[
affinity_predictor_output
,
ligandome_output
]
,
name
=
"
ligandome
"
,
name
=
"
ligandome
"
,
)
)
network
.
summary
()
network
.
summary
()
return
network
return
network
@staticmethod
def
loss
(
y_true
,
y_pred
,
sample_weight
=
None
,
delta
=
0.2
,
alpha
=
None
):
"""
Loss function for ligandome prediction.
"""
import
tensorflow
as
tf
y_pred
=
tf
.
squeeze
(
y_pred
,
axis
=-
1
)
y_true
=
tf
.
reshape
(
tf
.
cast
(
y_true
,
tf
.
bool
),
(
-
1
,))
pos
=
tf
.
boolean_mask
(
y_pred
,
y_true
)
if
alpha
is
None
:
pos_max
=
tf
.
reduce_max
(
pos
,
axis
=
1
)
else
:
# Smooth maximum
exp_alpha_x
=
tf
.
exp
(
alpha
*
pos
)
numerator
=
tf
.
reduce_sum
(
tf
.
multiply
(
pos
,
exp_alpha_x
),
axis
=
1
)
denominator
=
tf
.
reduce_sum
(
exp_alpha_x
,
axis
=
1
)
pos_max
=
numerator
/
denominator
neg
=
tf
.
boolean_mask
(
y_pred
,
tf
.
logical_not
(
y_true
))
result
=
tf
.
reduce_sum
(
tf
.
maximum
(
0.0
,
tf
.
reshape
(
neg
,
(
-
1
,
1
))
-
pos_max
+
delta
)
**
2
)
return
result
def
peptides_to_network_input
(
self
,
peptides
):
def
peptides_to_network_input
(
self
,
peptides
):
"""
"""
Encode peptides to the fixed-length encoding expected by the neural
Encode peptides to the fixed-length encoding expected by the neural
...
@@ -241,6 +251,8 @@ class Class1LigandomePredictor(object):
...
@@ -241,6 +251,8 @@ class Class1LigandomePredictor(object):
peptides
,
peptides
,
labels
,
labels
,
allele_encoding
,
allele_encoding
,
affinities_mask
=
None
,
# True when a peptide/label is actually a peptide and an affinity
inequalities
=
None
,
# interpreted only for elements where affinities_mask is True, otherwise ignored
shuffle_permutation
=
None
,
shuffle_permutation
=
None
,
verbose
=
1
,
verbose
=
1
,
progress_callback
=
None
,
progress_callback
=
None
,
...
@@ -275,14 +287,25 @@ class Class1LigandomePredictor(object):
...
@@ -275,14 +287,25 @@ class Class1LigandomePredictor(object):
'
allele
'
:
allele_encoding_input
,
'
allele
'
:
allele_encoding_input
,
}
}
loss
=
MSEWithInequalitiesAndMultipleOutputs
(
losses
=
[
MSEWithInequalities
(),
MultiallelicMassSpecLoss
(
delta
=
self
.
hyperparameters
[
'
loss_delta
'
]),
])
y_values_pre_encoding
=
labels
.
copy
()
if
affinities_mask
is
not
None
:
y_values_pre_encoding
[
affinities_mask
]
=
from_ic50
(
labels
)
y_values
=
loss
.
encode_y
(
y_values_pre_encoding
,
inequalities
=
inequalities
[
affinities_mask
]
if
inequalities
is
not
None
else
None
,
output_indices
=
(
~
affinities_mask
).
astype
(
int
)
if
affinities_mask
is
not
None
else
numpy
.
ones
(
len
(
y_values_pre_encoding
),
dtype
=
int
))
fit_info
=
collections
.
defaultdict
(
list
)
fit_info
=
collections
.
defaultdict
(
list
)
self
.
set_allele_representations
(
allele_representations
)
self
.
set_allele_representations
(
allele_representations
)
self
.
network
.
compile
(
self
.
network
.
compile
(
loss
=
partial
(
loss
=
loss
.
loss
,
self
.
loss
,
delta
=
self
.
hyperparameters
[
'
loss_delta
'
],
alpha
=
self
.
hyperparameters
[
'
loss_alpha
'
]),
optimizer
=
self
.
hyperparameters
[
'
optimizer
'
])
optimizer
=
self
.
hyperparameters
[
'
optimizer
'
])
if
self
.
hyperparameters
[
'
learning_rate
'
]
is
not
None
:
if
self
.
hyperparameters
[
'
learning_rate
'
]
is
not
None
:
K
.
set_value
(
K
.
set_value
(
...
@@ -371,6 +394,7 @@ class Class1LigandomePredictor(object):
...
@@ -371,6 +394,7 @@ class Class1LigandomePredictor(object):
self
,
self
,
peptides
,
peptides
,
allele_encoding
,
allele_encoding
,
output
=
"
affinities
"
,
batch_size
=
DEFAULT_PREDICT_BATCH_SIZE
):
batch_size
=
DEFAULT_PREDICT_BATCH_SIZE
):
(
allele_encoding_input
,
allele_representations
)
=
(
(
allele_encoding_input
,
allele_representations
)
=
(
self
.
allele_encoding_to_network_input
(
allele_encoding
.
compact
()))
self
.
allele_encoding_to_network_input
(
allele_encoding
.
compact
()))
...
@@ -380,12 +404,16 @@ class Class1LigandomePredictor(object):
...
@@ -380,12 +404,16 @@ class Class1LigandomePredictor(object):
'
allele
'
:
allele_encoding_input
,
'
allele
'
:
allele_encoding_input
,
}
}
predictions
=
self
.
network
.
predict
(
x_dict
,
batch_size
=
batch_size
)
predictions
=
self
.
network
.
predict
(
x_dict
,
batch_size
=
batch_size
)
if
output
==
"
affinities
"
:
predictions
=
to_ic50
(
predictions
[
0
])
elif
output
==
"
ligandome_presentation
"
:
predictions
=
predictions
[
1
]
elif
output
==
"
both
"
:
pass
else
:
raise
NotImplementedError
(
"
Unknown output
"
,
output
)
return
numpy
.
squeeze
(
predictions
)
return
numpy
.
squeeze
(
predictions
)
#def predict(self):
def
set_allele_representations
(
self
,
allele_representations
):
def
set_allele_representations
(
self
,
allele_representations
):
"""
"""
"""
"""
...
@@ -440,3 +468,13 @@ class Class1LigandomePredictor(object):
...
@@ -440,3 +468,13 @@ class Class1LigandomePredictor(object):
original_model
.
fit_generator
=
throw
original_model
.
fit_generator
=
throw
layer
.
set_weights
([
reshaped
])
layer
.
set_weights
([
reshaped
])
@staticmethod
def
allele_features
(
allele_names
,
hyperparameters
):
df
=
pandas
.
DataFrame
({
"
allele_name
"
:
allele_names
})
if
hyperparameters
[
'
allele_features_include_gene
'
]:
# TODO: support other organisms.
for
gene
in
[
"
A
"
,
"
B
"
,
"
C
"
]:
df
[
gene
]
=
df
.
allele_name
.
str
.
startswith
(
"
HLA-%s
"
%
gene
).
astype
(
float
)
return
gene
This diff is collapsed.
Click to expand it.
mhcflurry/custom_loss.py
+
68
−
8
View file @
2e8dc426
...
@@ -182,8 +182,10 @@ class MSEWithInequalitiesAndMultipleOutputs(Loss):
...
@@ -182,8 +182,10 @@ class MSEWithInequalitiesAndMultipleOutputs(Loss):
supports_inequalities
=
True
supports_inequalities
=
True
supports_multiple_outputs
=
True
supports_multiple_outputs
=
True
@staticmethod
def
__init__
(
self
,
losses
=
MSEWithInequalities
):
def
encode_y
(
y
,
inequalities
=
None
,
output_indices
=
None
):
self
.
losses
=
losses
def
encode_y
(
self
,
y
,
inequalities
=
None
,
output_indices
=
None
):
y
=
array
(
y
,
dtype
=
"
float32
"
)
y
=
array
(
y
,
dtype
=
"
float32
"
)
if
isnan
(
y
).
any
():
if
isnan
(
y
).
any
():
raise
ValueError
(
"
y contains NaN
"
,
y
)
raise
ValueError
(
"
y contains NaN
"
,
y
)
...
@@ -192,8 +194,25 @@ class MSEWithInequalitiesAndMultipleOutputs(Loss):
...
@@ -192,8 +194,25 @@ class MSEWithInequalitiesAndMultipleOutputs(Loss):
if
(
y
<
0.0
).
any
():
if
(
y
<
0.0
).
any
():
raise
ValueError
(
"
y contains values < 0.0
"
,
y
)
raise
ValueError
(
"
y contains values < 0.0
"
,
y
)
encoded
=
MSEWithInequalities
.
encode_y
(
if
isinstance
(
self
.
losses
,
Loss
):
y
,
inequalities
=
inequalities
)
# Single loss applied to all outputs
encoded
=
MSEWithInequalities
.
encode_y
(
y
,
inequalities
=
inequalities
)
else
:
assert
output_indices
is
not
None
df
=
pandas
.
DataFrame
({
"
y
"
:
y
,
"
inequality
"
:
inequalities
,
"
output_index
"
:
output_indices
,
})
encoded
=
y
.
copy
()
encoded
[:]
=
numpy
.
nan
for
(
output_index
,
sub_df
)
in
df
.
groupby
(
"
output_index
"
):
loss
=
self
.
losses
[
output_index
]
loss_kwargs
=
{}
if
not
sub_df
.
inequality
.
isnull
().
all
():
loss_kwargs
[
'
inequalities
'
]
=
sub_df
.
inequality
.
values
encoded
[
sub_df
.
index
.
values
]
=
loss
.
encode_y
(
sub_df
.
y
.
values
,
**
loss_kwargs
)
if
output_indices
is
not
None
:
if
output_indices
is
not
None
:
output_indices
=
numpy
.
array
(
output_indices
)
output_indices
=
numpy
.
array
(
output_indices
)
...
@@ -205,8 +224,7 @@ class MSEWithInequalitiesAndMultipleOutputs(Loss):
...
@@ -205,8 +224,7 @@ class MSEWithInequalitiesAndMultipleOutputs(Loss):
return
encoded
return
encoded
@staticmethod
def
loss
(
self
,
y_true
,
y_pred
):
def
loss
(
y_true
,
y_pred
):
from
keras
import
backend
as
K
from
keras
import
backend
as
K
y_true
=
K
.
flatten
(
y_true
)
y_true
=
K
.
flatten
(
y_true
)
...
@@ -230,7 +248,49 @@ class MSEWithInequalitiesAndMultipleOutputs(Loss):
...
@@ -230,7 +248,49 @@ class MSEWithInequalitiesAndMultipleOutputs(Loss):
# ], axis=-1)
# ], axis=-1)
#updated_y_pred = tf.gather_nd(y_pred, indexer)
#updated_y_pred = tf.gather_nd(y_pred, indexer)
return
MSEWithInequalities
.
loss
(
updated_y_true
,
updated_y_pred
)
if
isinstance
(
self
.
losses
,
Loss
):
# Single loss for all outputs.
return
self
.
losses
.
loss
(
updated_y_true
,
updated_y_pred
)
else
:
# TODO: make this more efficient?
result
=
None
for
(
i
,
loss
)
in
enumerate
(
self
.
losses
):
values
=
(
loss
.
loss
(
updated_y_true
,
updated_y_pred
)
*
K
.
cast
(
K
.
equal
(
output_indices
,
i
),
"
float32
"
))
if
result
is
None
:
result
=
values
else
:
result
+=
values
return
result
class
MultiallelicMassSpecLoss
(
Loss
):
"""
"""
name
=
"
multiallelic_mass_spec_loss
"
supports_inequalities
=
True
supports_multiple_outputs
=
False
def
__init__
(
self
,
delta
=
0.2
):
self
.
delta
=
delta
def
encode_y
(
self
,
y
):
return
y
def
loss
(
self
,
y_true
,
y_pred
):
import
tensorflow
as
tf
#y_pred = tf.squeeze(y_pred, axis=-1)
y_true
=
tf
.
reshape
(
tf
.
cast
(
y_true
,
tf
.
bool
),
(
-
1
,))
pos
=
tf
.
boolean_mask
(
y_pred
,
y_true
)
pos_max
=
tf
.
reduce_max
(
pos
,
axis
=
1
)
neg
=
tf
.
boolean_mask
(
y_pred
,
tf
.
logical_not
(
y_true
))
result
=
tf
.
reduce_sum
(
tf
.
maximum
(
0.0
,
tf
.
reshape
(
neg
,
(
-
1
,
1
))
-
pos_max
+
self
.
delta
)
**
2
)
return
result
def
check_shape
(
name
,
arr
,
expected_shape
):
def
check_shape
(
name
,
arr
,
expected_shape
):
...
@@ -250,5 +310,5 @@ def check_shape(name, arr, expected_shape):
...
@@ -250,5 +310,5 @@ def check_shape(name, arr, expected_shape):
# Register custom losses.
# Register custom losses.
for
cls
in
[
MSEWithInequalities
,
MSEWithInequalitiesAndMultipleOutputs
]:
for
cls
in
[
MSEWithInequalities
,
MSEWithInequalitiesAndMultipleOutputs
,
MultiallelicMassSpecLoss
]:
CUSTOM_LOSSES
[
cls
.
name
]
=
cls
()
CUSTOM_LOSSES
[
cls
.
name
]
=
cls
()
This diff is collapsed.
Click to expand it.
test/test_class1_ligandome_predictor.py
+
75
−
73
View file @
2e8dc426
...
@@ -38,6 +38,7 @@ from mhcflurry.regression_target import from_ic50
...
@@ -38,6 +38,7 @@ from mhcflurry.regression_target import from_ic50
from
mhcflurry.common
import
random_peptides
,
positional_frequency_matrix
from
mhcflurry.common
import
random_peptides
,
positional_frequency_matrix
from
mhcflurry.testing_utils
import
cleanup
,
startup
from
mhcflurry.testing_utils
import
cleanup
,
startup
from
mhcflurry.amino_acid
import
COMMON_AMINO_ACIDS
from
mhcflurry.amino_acid
import
COMMON_AMINO_ACIDS
from
mhcflurry.custom_loss
import
MultiallelicMassSpecLoss
COMMON_AMINO_ACIDS
=
sorted
(
COMMON_AMINO_ACIDS
)
COMMON_AMINO_ACIDS
=
sorted
(
COMMON_AMINO_ACIDS
)
...
@@ -110,73 +111,66 @@ def evaluate_loss(loss, y_true, y_pred):
...
@@ -110,73 +111,66 @@ def evaluate_loss(loss, y_true, y_pred):
def
test_loss
():
def
test_loss
():
for
delta
in
[
0.0
,
0.3
]:
for
delta
in
[
0.0
,
0.3
]:
for
alpha
in
[
None
,
1.0
,
20.0
]:
print
(
"
delta
"
,
delta
)
print
(
"
delta
"
,
delta
)
# Hit labels
print
(
"
alpha
"
,
alpha
)
y_true
=
[
# Hit labels
1.0
,
y_true
=
[
0.0
,
1.0
,
1.0
,
0.0
,
1.0
,
1.0
,
0.0
1.0
,
]
0.0
y_true
=
numpy
.
array
(
y_true
)
]
y_pred
=
[
y_true
=
numpy
.
array
(
y_true
)
[
0.3
,
0.7
,
0.5
],
y_pred
=
[
[
0.2
,
0.4
,
0.6
],
[
0.3
,
0.7
,
0.5
],
[
0.1
,
0.5
,
0.3
],
[
0.2
,
0.4
,
0.6
],
[
0.1
,
0.7
,
0.1
],
[
0.1
,
0.5
,
0.3
],
[
0.8
,
0.2
,
0.4
],
[
0.1
,
0.7
,
0.1
],
]
[
0.8
,
0.2
,
0.4
],
y_pred
=
numpy
.
array
(
y_pred
)
]
y_pred
=
numpy
.
array
(
y_pred
)
# reference implementation 1
# reference implementation 1
def
smooth_max
(
x
,
alpha
):
x
=
numpy
.
array
(
x
)
def
smooth_max
(
x
,
alpha
):
alpha
=
numpy
.
array
([
alpha
])
x
=
numpy
.
array
(
x
)
return
(
x
*
numpy
.
exp
(
x
*
alpha
)).
sum
()
/
(
alpha
=
numpy
.
array
([
alpha
])
numpy
.
exp
(
x
*
alpha
)).
sum
()
return
(
x
*
numpy
.
exp
(
x
*
alpha
)).
sum
()
/
(
numpy
.
exp
(
x
*
alpha
)).
sum
()
contributions
=
[]
for
i
in
range
(
len
(
y_true
)):
if
alpha
is
None
:
if
y_true
[
i
]
==
1.0
:
max_func
=
max
for
j
in
range
(
len
(
y_true
)):
else
:
if
y_true
[
j
]
==
0.0
:
max_func
=
partial
(
smooth_max
,
alpha
=
alpha
)
tightest_i
=
max
(
y_pred
[
i
])
contribution
=
sum
(
contributions
=
[]
max
(
0
,
y_pred
[
j
,
k
]
-
tightest_i
+
delta
)
**
2
for
i
in
range
(
len
(
y_true
)):
for
k
in
range
(
y_pred
.
shape
[
1
])
if
y_true
[
i
]
==
1.0
:
)
for
j
in
range
(
len
(
y_true
)):
contributions
.
append
(
contribution
)
if
y_true
[
j
]
==
0.0
:
contributions
=
numpy
.
array
(
contributions
)
tightest_i
=
max_func
(
y_pred
[
i
])
expected1
=
contributions
.
sum
()
contribution
=
sum
(
max
(
0
,
y_pred
[
j
,
k
]
-
tightest_i
+
delta
)
**
2
# reference implementation 2: numpy
for
k
in
range
(
y_pred
.
shape
[
1
])
pos
=
numpy
.
array
([
)
max
(
y_pred
[
i
])
contributions
.
append
(
contribution
)
for
i
in
range
(
len
(
y_pred
))
contributions
=
numpy
.
array
(
contributions
)
if
y_true
[
i
]
==
1.0
expected1
=
contributions
.
sum
()
])
# reference implementation 2: numpy
neg
=
y_pred
[
~
y_true
.
astype
(
bool
)]
pos
=
numpy
.
array
([
expected2
=
(
max_func
(
y_pred
[
i
])
numpy
.
maximum
(
0
,
neg
.
reshape
((
-
1
,
1
))
-
pos
+
delta
)
**
2
).
sum
()
for
i
in
range
(
len
(
y_pred
))
if
y_true
[
i
]
==
1.0
yield
numpy
.
testing
.
assert_almost_equal
,
expected1
,
expected2
,
4
])
computed
=
evaluate_loss
(
neg
=
y_pred
[
~
y_true
.
astype
(
bool
)]
MultiallelicMassSpecLoss
(
delta
=
delta
).
loss
,
expected2
=
(
y_true
,
numpy
.
maximum
(
0
,
neg
.
reshape
((
-
1
,
1
))
-
pos
+
delta
)
**
2
).
sum
()
y_pred
.
reshape
(
y_pred
.
shape
+
(
1
,)))
yield
numpy
.
testing
.
assert_almost_equal
,
expected1
,
expected2
,
4
yield
numpy
.
testing
.
assert_almost_equal
,
computed
,
expected1
,
4
computed
=
evaluate_loss
(
partial
(
Class1LigandomePredictor
.
loss
,
delta
=
delta
,
alpha
=
alpha
),
y_true
,
y_pred
.
reshape
(
y_pred
.
shape
+
(
1
,)))
yield
numpy
.
testing
.
assert_almost_equal
,
computed
,
expected1
,
4
AA_DIST
=
pandas
.
Series
(
AA_DIST
=
pandas
.
Series
(
...
@@ -284,6 +278,7 @@ def test_synthetic_allele_refinement(max_epochs=10):
...
@@ -284,6 +278,7 @@ def test_synthetic_allele_refinement(max_epochs=10):
predictor
=
Class1LigandomePredictor
(
predictor
=
Class1LigandomePredictor
(
PAN_ALLELE_PREDICTOR_NO_MASS_SPEC
,
PAN_ALLELE_PREDICTOR_NO_MASS_SPEC
,
additional_dense_layers
=
[
8
,
1
],
max_ensemble_size
=
1
,
max_ensemble_size
=
1
,
max_epochs
=
max_epochs
,
max_epochs
=
max_epochs
,
learning_rate
=
0.0001
,
learning_rate
=
0.0001
,
...
@@ -299,9 +294,11 @@ def test_synthetic_allele_refinement(max_epochs=10):
...
@@ -299,9 +294,11 @@ def test_synthetic_allele_refinement(max_epochs=10):
allele_to_sequence
=
PAN_ALLELE_PREDICTOR_NO_MASS_SPEC
.
allele_to_sequence
,
allele_to_sequence
=
PAN_ALLELE_PREDICTOR_NO_MASS_SPEC
.
allele_to_sequence
,
).
compact
()
).
compact
()
pre_predictions
=
predictor
.
predict
(
pre_predictions
=
from_ic50
(
peptides
=
train_df
.
peptide
.
values
,
predictor
.
predict
(
allele_encoding
=
allele_encoding
)
output
=
"
affinities
"
,
peptides
=
train_df
.
peptide
.
values
,
allele_encoding
=
allele_encoding
))
(
model
,)
=
PAN_ALLELE_PREDICTOR_NO_MASS_SPEC
.
class1_pan_allele_models
(
model
,)
=
PAN_ALLELE_PREDICTOR_NO_MASS_SPEC
.
class1_pan_allele_models
expected_pre_predictions
=
from_ic50
(
expected_pre_predictions
=
from_ic50
(
...
@@ -310,11 +307,13 @@ def test_synthetic_allele_refinement(max_epochs=10):
...
@@ -310,11 +307,13 @@ def test_synthetic_allele_refinement(max_epochs=10):
allele_encoding
=
allele_encoding
.
allele_encoding
,
allele_encoding
=
allele_encoding
.
allele_encoding
,
)).
reshape
((
-
1
,
len
(
alleles
)))
)).
reshape
((
-
1
,
len
(
alleles
)))
#import ipdb ; ipdb.set_trace()
train_df
[
"
pre_max_prediction
"
]
=
pre_predictions
.
max
(
1
)
train_df
[
"
pre_max_prediction
"
]
=
pre_predictions
.
max
(
1
)
pre_auc
=
roc_auc_score
(
train_df
.
hit
.
values
,
train_df
.
pre_max_prediction
.
values
)
pre_auc
=
roc_auc_score
(
train_df
.
hit
.
values
,
train_df
.
pre_max_prediction
.
values
)
print
(
"
PRE_AUC
"
,
pre_auc
)
print
(
"
PRE_AUC
"
,
pre_auc
)
assert_allclose
(
pre_predictions
,
expected_pre_predictions
)
assert_allclose
(
pre_predictions
,
expected_pre_predictions
,
rtol
=
1e-4
)
motifs_history
=
[]
motifs_history
=
[]
random_peptides_encodable
=
make_random_peptides
(
10000
,
[
9
])
random_peptides_encodable
=
make_random_peptides
(
10000
,
[
9
])
...
@@ -328,8 +327,11 @@ def test_synthetic_allele_refinement(max_epochs=10):
...
@@ -328,8 +327,11 @@ def test_synthetic_allele_refinement(max_epochs=10):
metric_rows
=
[]
metric_rows
=
[]
def
progress
():
def
progress
():
predictions
=
predictor
.
predict
(
peptides
=
train_df
.
peptide
.
values
,
predictions
=
from_ic50
(
allele_encoding
=
allele_encoding
,
)
predictor
.
predict
(
output
=
"
affinities
"
,
peptides
=
train_df
.
peptide
.
values
,
allele_encoding
=
allele_encoding
))
train_df
[
"
max_prediction
"
]
=
predictions
.
max
(
1
)
train_df
[
"
max_prediction
"
]
=
predictions
.
max
(
1
)
train_df
[
"
predicted_allele
"
]
=
pandas
.
Series
(
alleles
).
loc
[
train_df
[
"
predicted_allele
"
]
=
pandas
.
Series
(
alleles
).
loc
[
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment