Skip to content
Snippets Groups Projects
Commit 2b38c362 authored by Alex Rubinsteyn's avatar Alex Rubinsteyn
Browse files

added imputation module

parent 2ab2dbd9
No related branches found
No related tags found
No related merge requests found
# Copyright (c) 2015. Mount Sinai School of Medicine
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import (
print_function,
division,
absolute_import,
)
from collections import defaultdict
import numpy as np
def prune_dense_matrix_and_labels(
X,
peptide_list,
allele_list,
min_observations_per_peptide=1,
min_observations_per_allele=1):
"""
Filter the dense matrix of pMHC binding affinities according to
the given minimum number of row/column observations.
Parameters
----------
X : numpy.ndarray
Incomplete dense matrix of pMHC affinity with n_peptides rows and
n_alleles columns.
peptide_list : list of str
Expected to have n_peptides entries
allele_list : list of str
Expected to have n_alleles entries
min_observations_per_peptide : int
Drop peptide rows with fewer than this number of observed values.
min_observations_per_allele : int
Drop allele columns with fewer than this number of observed values.
"""
observed_mask = np.isfinite(X)
n_observed_per_peptide = observed_mask.sum(axis=1)
too_few_peptide_observations = (
n_observed_per_peptide < min_observations_per_peptide)
if too_few_peptide_observations.any():
drop_peptide_indices = np.where(too_few_peptide_observations)[0]
keep_peptide_indices = np.where(~too_few_peptide_observations)[0]
print("Dropping %d peptides with <%d observations" % (
len(drop_peptide_indices),
min_observations_per_peptide))
X = X[keep_peptide_indices]
observed_mask = observed_mask[keep_peptide_indices]
peptide_list = [peptide_list[i] for i in keep_peptide_indices]
n_observed_per_allele = observed_mask.sum(axis=0)
too_few_allele_observations = (
n_observed_per_allele < min_observations_per_peptide)
if too_few_peptide_observations.any():
drop_allele_indices = np.where(too_few_allele_observations)[0]
keep_allele_indices = np.where(~too_few_allele_observations)[0]
print("Dropping %d alleles with <%d observations: %s" % (
len(drop_allele_indices),
min_observations_per_allele,
[allele_list[i] for i in drop_allele_indices]))
X = X[:, keep_allele_indices]
observed_mask = observed_mask[:, keep_allele_indices]
allele_list = [allele_list[i] for i in keep_allele_indices]
return X, peptide_list, allele_list
def create_incompelte_dense_pMHC_matrix(
allele_data_dict,
min_observations_per_peptide=1,
min_observations_per_allele=1):
"""
Given a dictionary mapping each allele name onto an AlleleData object,
returns a tuple with a dense matrix of affinities, a list of peptide labels
for each row and a list of allele labels for each column.
Parameters
----------
allele_data_dict : dict
Dictionary mapping allele names to AlleleData objects
imputer : object
Expected to have a method imputer.complete(X) which takes an array
with missing entries marked by NaN and returns a completed array.
min_observations_per_peptide : int
Drop peptide rows with fewer than this number of observed values.
min_observations_per_allele : int
Drop allele columns with fewer than this number of observed values.
"""
peptide_to_allele_to_affinity_dict = defaultdict(dict)
for (allele_name, allele_data) in allele_data_dict.items():
for peptide, affinity in zip(
allele_data.original_peptides,
allele_data.Y):
if allele_name not in peptide_to_allele_to_affinity_dict[peptide]:
peptide_to_allele_to_affinity_dict[peptide][allele_name] = affinity
n_binding_values = sum(
len(allele_dict)
for allele_dict in
allele_to_peptide_to_affinity.values()
)
print("Collected %d binding values for %d alleles" % (
n_binding_values,
len(peptide_to_allele_to_affinity_dict)))
X, peptide_list, allele_list = \
dense_matrix_from_nested_dictionary(peptide_to_allele_to_affinity)
return prune_data(
X,
peptide_list,
allele_list,
min_observations_per_peptide=min_observations_per_peptide,
min_observations_per_allele=min_observations_per_allele)
def create_imputed_dataset(
allele_data_dict,
imputer,
min_observations_per_peptide=1,
min_observations_per_allele=1):
"""
Parameters
----------
allele_data_dict : dict
Dictionary mapping allele names to AlleleData objects
imputer : object
Expected to have a method imputer.complete(X) which takes an array
with missing entries marked by NaN and returns a completed array.
min_observations_per_peptide : int
Drop peptide rows with fewer than this number of observed values.
min_observations_per_allele : int
Drop allele columns with fewer than this number of observed values.
"""
X_incomplete, peptide_list, allele_list = create_incompelte_dense_pMHC_matrix(
allele_data_dict=allele_data_dict,
min_observations_per_peptide=min_observations_per_peptide,
min_observations_per_allele=min_observations_per_allele)
X_complete = impute.complete(X_incomplete)
......@@ -16,4 +16,4 @@ def test_create_allele_data_from_peptide_to_ic50_dict():
"C" * 9,
])
peptides = set(allele_data.peptides)
eq_(expected_peptides, peptides)
\ No newline at end of file
eq_(expected_peptides, peptides)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment