Skip to content
Snippets Groups Projects
Commit 1c37ad3a authored by Tim O'Donnell's avatar Tim O'Donnell
Browse files

change models_class1_experiments1 to run each experiment in separate scripts

parent d154bcbd
No related branches found
No related tags found
No related merge requests found
Showing
with 183 additions and 207 deletions
......@@ -4,7 +4,7 @@ set -e
set -x
DOWNLOAD_NAME=data_curated
SCRATCH_DIR=/tmp/mhcflurry-downloads-generation
SCRATCH_DIR=${TMPDIR-/tmp}/mhcflurry-downloads-generation
SCRIPT_ABSOLUTE_PATH="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)/$(basename "${BASH_SOURCE[0]}")"
SCRIPT_DIR=$(dirname "$SCRIPT_ABSOLUTE_PATH")
export PYTHONUNBUFFERED=1
......
......@@ -4,7 +4,7 @@ set -e
set -x
DOWNLOAD_NAME=data_iedb
SCRATCH_DIR=/tmp/mhcflurry-downloads-generation
SCRATCH_DIR=${TMPDIR-/tmp}/mhcflurry-downloads-generation
SCRIPT_ABSOLUTE_PATH="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)/$(basename "${BASH_SOURCE[0]}")"
mkdir -p "$SCRATCH_DIR"
......
......@@ -4,7 +4,7 @@ set -e
set -x
DOWNLOAD_NAME=data_kim2014
SCRATCH_DIR=/tmp/mhcflurry-downloads-generation
SCRATCH_DIR=${TMPDIR-/tmp}/mhcflurry-downloads-generation
SCRIPT_ABSOLUTE_PATH="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)/$(basename "${BASH_SOURCE[0]}")"
mkdir -p "$SCRATCH_DIR"
......
......@@ -4,7 +4,7 @@ set -e
set -x
DOWNLOAD_NAME=models_class1
SCRATCH_DIR=/tmp/mhcflurry-downloads-generation
SCRATCH_DIR=${TMPDIR-/tmp}/mhcflurry-downloads-generation
SCRIPT_ABSOLUTE_PATH="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)/$(basename "${BASH_SOURCE[0]}")"
SCRIPT_DIR=$(dirname "$SCRIPT_ABSOLUTE_PATH")
......
......@@ -23,15 +23,16 @@ git status
cd $SCRATCH_DIR/$DOWNLOAD_NAME
mkdir models
cp $SCRIPT_DIR/hyperparameters.json .
time mhcflurry-class1-train-allele-specific-models \
--data "$(mhcflurry-downloads path data_curated)/curated_training_data.csv.bz2" \
--hyperparameters hyperparameters.json \
--out-models-dir models \
--min-measurements-per-allele 100
for mod in 0local 1local dense16 dense64 noL1
do
cp $SCRIPT_DIR/hyperparameters-${mod}.json .
mkdir models-${mod}
time mhcflurry-class1-train-allele-specific-models \
--data "$(mhcflurry-downloads path data_curated)/curated_training_data.csv.bz2" \
--hyperparameters hyperparameters-${mod}.json \
--out-models-dir models-${mod} \
--min-measurements-per-allele 100
done
cp $SCRIPT_ABSOLUTE_PATH .
bzip2 LOG.txt
......
[
{
"n_models": 8,
"max_epochs": 500,
"patience": 10,
"early_stopping": true,
"validation_split": 0.2,
"random_negative_rate": 0.0,
"random_negative_constant": 25,
"use_embedding": false,
"kmer_size": 15,
"batch_normalization": false,
"locally_connected_layers": [],
"activation": "relu",
"output_activation": "sigmoid",
"layer_sizes": [
32
],
"random_negative_affinity_min": 20000.0,
"random_negative_affinity_max": 50000.0,
"dense_layer_l1_regularization": 0.001,
"dropout_probability": 0.0
}
]
\ No newline at end of file
[
{
"n_models": 8,
"max_epochs": 500,
"patience": 10,
"early_stopping": true,
"validation_split": 0.2,
"random_negative_rate": 0.0,
"random_negative_constant": 25,
"use_embedding": false,
"kmer_size": 15,
"batch_normalization": false,
"locally_connected_layers": [
{
"filters": 8,
"activation": "tanh",
"kernel_size": 3
}
],
"activation": "relu",
"output_activation": "sigmoid",
"layer_sizes": [
32
],
"random_negative_affinity_min": 20000.0,
"random_negative_affinity_max": 50000.0,
"dense_layer_l1_regularization": 0.001,
"dropout_probability": 0.0
}
]
\ No newline at end of file
[
{
"n_models": 8,
"max_epochs": 500,
"patience": 10,
"early_stopping": true,
"validation_split": 0.2,
"random_negative_rate": 0.0,
"random_negative_constant": 25,
"use_embedding": false,
"kmer_size": 15,
"batch_normalization": false,
"locally_connected_layers": [
{
"filters": 8,
"activation": "tanh",
"kernel_size": 3
},
{
"filters": 8,
"activation": "tanh",
"kernel_size": 3
}
],
"activation": "relu",
"output_activation": "sigmoid",
"layer_sizes": [
16
],
"random_negative_affinity_min": 20000.0,
"random_negative_affinity_max": 50000.0,
"dense_layer_l1_regularization": 0.001,
"dropout_probability": 0.0
}
]
\ No newline at end of file
[
{
"n_models": 8,
"max_epochs": 500,
"patience": 10,
"early_stopping": true,
"validation_split": 0.2,
"random_negative_rate": 0.0,
"random_negative_constant": 25,
"use_embedding": false,
"kmer_size": 15,
"batch_normalization": false,
"locally_connected_layers": [
{
"filters": 8,
"activation": "tanh",
"kernel_size": 3
},
{
"filters": 8,
"activation": "tanh",
"kernel_size": 3
}
],
"activation": "relu",
"output_activation": "sigmoid",
"layer_sizes": [
64
],
"random_negative_affinity_min": 20000.0,
"random_negative_affinity_max": 50000.0,
"dense_layer_l1_regularization": 0.001,
"dropout_probability": 0.0
}
]
\ No newline at end of file
[
{
"n_models": 8,
"max_epochs": 500,
"patience": 10,
"early_stopping": true,
"validation_split": 0.2,
"random_negative_rate": 0.0,
"random_negative_constant": 25,
"use_embedding": false,
"kmer_size": 15,
"batch_normalization": false,
"locally_connected_layers": [
{
"filters": 8,
"activation": "tanh",
"kernel_size": 3
},
{
"filters": 8,
"activation": "tanh",
"kernel_size": 3
}
],
"activation": "relu",
"output_activation": "sigmoid",
"layer_sizes": [
32
],
"random_negative_affinity_min": 20000.0,
"random_negative_affinity_max": 50000.0,
"dense_layer_l1_regularization": 0.0,
"dropout_probability": 0.0
}
]
[
{
"n_models": 8,
"max_epochs": 500,
"patience": 10,
"early_stopping": true,
"validation_split": 0.2,
"random_negative_rate": 0.0,
"random_negative_constant": 25,
"use_embedding": false,
"kmer_size": 15,
"batch_normalization": false,
"locally_connected_layers": [
{
"filters": 8,
"activation": "tanh",
"kernel_size": 3
},
{
"filters": 8,
"activation": "tanh",
"kernel_size": 3
}
],
"activation": "relu",
"output_activation": "sigmoid",
"layer_sizes": [
32
],
"random_negative_affinity_min": 20000.0,
"random_negative_affinity_max": 50000.0,
"dense_layer_l1_regularization": 0.001,
"dropout_probability": 0.0
},
{
"n_models": 8,
"max_epochs": 500,
"patience": 10,
"early_stopping": true,
"validation_split": 0.2,
"random_negative_rate": 0.0,
"random_negative_constant": 25,
"use_embedding": false,
"kmer_size": 15,
"batch_normalization": false,
"locally_connected_layers": [
{
"filters": 8,
"activation": "tanh",
"kernel_size": 3
}
],
"activation": "relu",
"output_activation": "sigmoid",
"layer_sizes": [
32
],
"random_negative_affinity_min": 20000.0,
"random_negative_affinity_max": 50000.0,
"dense_layer_l1_regularization": 0.001,
"dropout_probability": 0.0
},
{
"n_models": 8,
"max_epochs": 500,
"patience": 10,
"early_stopping": true,
"validation_split": 0.2,
"random_negative_rate": 0.0,
"random_negative_constant": 25,
"use_embedding": false,
"kmer_size": 15,
"batch_normalization": false,
"locally_connected_layers": [],
"activation": "relu",
"output_activation": "sigmoid",
"layer_sizes": [
32
],
"random_negative_affinity_min": 20000.0,
"random_negative_affinity_max": 50000.0,
"dense_layer_l1_regularization": 0.001,
"dropout_probability": 0.0
},
{
"n_models": 8,
"max_epochs": 500,
"patience": 10,
"early_stopping": true,
"validation_split": 0.2,
"random_negative_rate": 0.0,
"random_negative_constant": 25,
"use_embedding": false,
"kmer_size": 15,
"batch_normalization": false,
"locally_connected_layers": [
{
"filters": 8,
"activation": "tanh",
"kernel_size": 3
},
{
"filters": 8,
"activation": "tanh",
"kernel_size": 3
}
],
"activation": "relu",
"output_activation": "sigmoid",
"layer_sizes": [
32
],
"random_negative_affinity_min": 20000.0,
"random_negative_affinity_max": 50000.0,
"dense_layer_l1_regularization": 0.0,
"dropout_probability": 0.0
},
{
"n_models": 8,
"max_epochs": 500,
"patience": 10,
"early_stopping": true,
"validation_split": 0.2,
"random_negative_rate": 0.0,
"random_negative_constant": 25,
"use_embedding": false,
"kmer_size": 15,
"batch_normalization": false,
"locally_connected_layers": [
{
"filters": 8,
"activation": "tanh",
"kernel_size": 3
},
{
"filters": 8,
"activation": "tanh",
"kernel_size": 3
}
],
"activation": "relu",
"output_activation": "sigmoid",
"layer_sizes": [
64
],
"random_negative_affinity_min": 20000.0,
"random_negative_affinity_max": 50000.0,
"dense_layer_l1_regularization": 0.001,
"dropout_probability": 0.0
},
{
"n_models": 8,
"max_epochs": 500,
"patience": 10,
"early_stopping": true,
"validation_split": 0.2,
"random_negative_rate": 0.0,
"random_negative_constant": 25,
"use_embedding": false,
"kmer_size": 15,
"batch_normalization": false,
"locally_connected_layers": [
{
"filters": 8,
"activation": "tanh",
"kernel_size": 3
},
{
"filters": 8,
"activation": "tanh",
"kernel_size": 3
}
],
"activation": "relu",
"output_activation": "sigmoid",
"layer_sizes": [
16
],
"random_negative_affinity_min": 20000.0,
"random_negative_affinity_max": 50000.0,
"dense_layer_l1_regularization": 0.001,
"dropout_probability": 0.0
}
]
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment