Skip to content
Snippets Groups Projects
Commit 0a80f505 authored by Tim O'Donnell's avatar Tim O'Donnell
Browse files

fix

parent a9547c5e
No related branches found
No related tags found
No related merge requests found
......@@ -39,7 +39,9 @@ def load_results(dirname, result_df=None, columns=None):
columns = manifest_df.col.values
if result_df is None:
result_df = pandas.DataFrame(index=peptides, columns=columns,
result_df = pandas.DataFrame(
index=peptides,
columns=columns,
dtype="float32")
result_df[:] = numpy.nan
peptides_to_assign = peptides
......@@ -54,7 +56,7 @@ def load_results(dirname, result_df=None, columns=None):
for _, row in tqdm.tqdm(manifest_df.iterrows(), total=len(manifest_df)):
with open(os.path.join(dirname, row.path), "rb") as fd:
value = numpy.load(fd)['arr_0']
value = numpy.load(fd)['arr_0'].astype(numpy.float32)
if mask is not None:
value = value[mask]
result_df.loc[peptides_to_assign, row.col] = value
......@@ -73,45 +75,50 @@ def run():
for some in df.hla.unique():
alleles.update(some.split())
predictions_dfs = {}
precomputed_dfs = {}
if 'netmhcpan4.ba' in args.predictors:
predictions_dfs['netmhcpan4.ba'] = load_results(
precomputed_dfs['netmhcpan4.ba'] = load_results(
get_path("data_mass_spec_benchmark", "predictions/all.netmhcpan4.ba"),
result_df=pandas.DataFrame(
dtype=numpy.float32,
index=peptides,
columns=["%s affinity" % a for a in alleles])).rename(
columns=lambda s: s.replace("affinity", "").strip())
predictions_dfs['netmhcpan4.ba'] *= -1
precomputed_dfs['netmhcpan4.ba'] *= -1
if 'netmhcpan4.el' in args.predictors:
predictions_dfs['netmhcpan4.el'] = load_results(
precomputed_dfs['netmhcpan4.el'] = load_results(
get_path("data_mass_spec_benchmark", "predictions/all.netmhcpan4.el"),
result_df=pandas.DataFrame(
dtype=numpy.float32,
index=peptides,
columns=["%s score" % a for a in alleles])).rename(
columns=lambda s: s.replace("score", "").strip())
if 'mixmhcpred' in args.predictors:
predictions_dfs['mixmhcpred'] = load_results(
get_path("data_mass_spec_benchmark", "predictions/all.mixmhcpred"),
result_df=pandas.DataFrame(
index=peptides,
columns=["%s score" % a for a in alleles])).rename(
columns=lambda s: s.replace("score", "").strip())
precomputed_dfs['mixmhcpred'] = load_results(
get_path("data_mass_spec_benchmark", "predictions/all.mixmhcpred"),
result_df=pandas.DataFrame(
dtype=numpy.float32,
index=peptides,
columns=["%s score" % a for a in alleles])).rename(
columns=lambda s: s.replace("score", "").strip())
skip_experiments = set()
for hla_text, sub_df in tqdm.tqdm(df.groupby("hla"), total=df.hla.nunique()):
hla = hla_text.split()
for (name, precomputed_df) in predictions_dfs.items():
for (name, precomputed_df) in precomputed_dfs.items():
df.loc[sub_df.index, name] = numpy.nan
prediction_df = pandas.DataFrame(index=sub_df.peptide)
prediction_df = pandas.DataFrame(index=sub_df.peptide, dtype=float)
for allele in hla:
if allele not in precomputed_df.columns or precomputed_df[allele].isnull().all():
print(sub_df.sample_id.unique(), hla)
skip_experiments.update(sub_df.sample_id.unique())
prediction_df[allele] = precomputed_df.loc[df.index, allele]
prediction_df[allele] = precomputed_df.loc[
prediction_df.index, allele
]
df.loc[sub_df.index, name] = prediction_df.max(1, skipna=False).values
df.loc[sub_df.index, name + " allele"] = prediction_df.idxmax(1, skipna=False).values
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment