Skip to content
Snippets Groups Projects
Commit 0141f5b8 authored by Tim O'Donnell's avatar Tim O'Donnell
Browse files

Remove scripts for now

parent b7472e20
No related merge requests found
#!/usr/bin/env python
# Copyright (c) 2016. Mount Sinai School of Medicine
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import (
print_function,
division,
absolute_import,
)
import argparse
from bottle import post, request, run, get
from mhcflurry.common import (
split_uppercase_sequences,
split_allele_names,
)
from mhcflurry.predict import predict, supported_alleles
parser = argparse.ArgumentParser()
parser.add_argument("--host", default="0.0.0.0")
parser.add_argument("--port", default=80, type=int)
parser.add_argument("--debug", default=False, action="store_true")
@post('/')
def get_binding_value():
peptides_string = request.forms.get('peptide')
if peptides_string is None:
return "ERROR: no peptide given"
peptides_list = split_uppercase_sequences(peptides_string)
alleles_string = request.forms.get('allele')
if alleles_string is None:
return "ERROR: no allele given"
alleles_list = split_allele_names(alleles_string)
try:
result_df = predict(alleles=alleles_list, peptides=peptides_list)
except ValueError as e:
return "ERROR: %s" % e.args[0]
return result_df.to_csv(sep="\t", index=False, float_format="%0.4f")
@get('/alleles')
def get_supported_alleles():
peptide_lengths = "8,9,10,11,12"
strings = [
"%s\t%s" % (allele, peptide_lengths)
for allele in supported_alleles()
]
return "\n".join(strings)
if __name__ == "__main__":
args = parser.parse_args()
run(host=args.host, port=args.port, debug=args.debug, server="cherrypy")
#!/usr/bin/env python
# Copyright (c) 2016. Mount Sinai School of Medicine
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import (
print_function,
division,
absolute_import,
)
import argparse
from mhcflurry.common import (
parse_int_list,
split_uppercase_sequences,
split_allele_names,
)
from mhcflurry.predict import predict
from six import string_types
parser = argparse.ArgumentParser()
parser.add_argument(
"--mhc",
default="HLA-A*02:01",
type=split_allele_names,
help="Comma separated list of MHC alleles")
parser.add_argument(
"--sequence",
required=True,
type=split_uppercase_sequences,
help="Comma separated list of protein sequences")
parser.add_argument(
"--fasta-file",
help="FASTA file of protein sequences to chop up into peptides")
parser.add_argument(
"--peptide-lengths",
default=[9],
type=parse_int_list,
help="Comma separated list of peptide length, e.g. 8,9,10,11")
if __name__ == "__main__":
args = parser.parse_args()
if len(args.peptide_lengths) == 0:
raise ValueError("Must specify at least one peptide length")
long_sequences = args.sequence
if isinstance(long_sequences, string_types):
long_sequences = [long_sequences]
peptides = []
for peptide_length in args.peptide_lengths:
for long_sequence in long_sequences:
total_length = len(long_sequence)
for i in range(total_length - peptide_length):
peptides.append(long_sequence[i:i + peptide_length])
print("Running predictor over %d sub-sequences" % len(peptides))
df = predict(alleles=args.mhc, peptides=peptides)
print(df.to_csv(sep="\t", index=False), end="")
......@@ -88,8 +88,4 @@ if __name__ == '__main__':
],
long_description=readme,
packages=['mhcflurry', 'mhcflurry.class1_allele_specific'],
scripts=[
"script/mhcflurry-predict-class1.py",
"script/mhcflurry-class1-web-server.py",
],
)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment