-
Tim O'Donnell authoredTim O'Donnell authored
mhcflurry
Open source neural network models for peptide-MHC binding affinity prediction
MHCflurry is a Python package for peptide/MHC I binding affinity prediction. It provides competitive accuracy with a fast, documented, open source implementation.
You can download pre-trained MHCflurry models fit to affinity measurements deposited in IEDB. See the "downloads_generation/models_class1" directory in the repository for the workflow used to train these predictors. Users with their own data can also fit their own MHCflurry models.
Currently only allele-specific prediction is implemented, in which separate models are trained for each allele. The released models therefore support a fixed set of common class I alleles for which sufficient published training data is available.
MHCflurry supports Python versions 2.7 and 3.4+. It uses the Keras neural network library via either the Tensorflow or Theano backends. GPUs may optionally be used for a generally modest speed improvement.
If you find MHCflurry useful in your research please cite:
O'Donnell, T. et al., 2017. MHCflurry: open-source class I MHC binding affinity prediction. bioRxiv. Available at: http://www.biorxiv.org/content/early/2017/08/09/174243.
Installation (pip)
Install the package:
pip install mhcflurry
Then download our datasets and trained models:
mhcflurry-downloads fetch
From a checkout you can run the unit tests with:
pip install nose nosetests .
Using conda
You can alternatively get up and running with a conda environment as follows. Some users have reported that this can avoid problems installing tensorflow.
conda create -q -n mhcflurry-env python=3.6 'tensorflow>=1.1.2' source activate mhcflurry-env
Then continue as above:
pip install mhcflurry mhcflurry-downloads fetch
Command-line usage
Downloading models
Most users will use pre-trained MHCflurry models that we release. These models are distributed separately from the source code and may be downloaded with the following command:
We also release other "downloads," such as curated training data and some experimental models. To see what you have downloaded, run:
mhcflurry-predict
The "mhcflurry-predict" command generates predictions from the command-line. It defaults to using the pre-trained models you downloaded above but this can be customized with the "--models" argument. See "mhcflurry-predict -h" for details.
$ mhcflurry-predict --alleles HLA-A0201 HLA-A0301 --peptides SIINFEKL SIINFEKD SIINFEKQ allele,peptide,mhcflurry_prediction,mhcflurry_prediction_low,mhcflurry_prediction_high HLA-A0201,SIINFEKL,5326.541919062165,3757.86675352994,7461.37693353508 HLA-A0201,SIINFEKD,18763.70298522213,13140.82000240037,23269.82139560844 HLA-A0201,SIINFEKQ,18620.10057358322,13096.425874678192,23223.148184869413 HLA-A0301,SIINFEKL,24481.726678691946,21035.52779725433,27245.371837497867 HLA-A0301,SIINFEKD,24687.529360239587,21582.590014592537,27749.39869616437 HLA-A0301,SIINFEKQ,25923.062203902562,23522.5793450799,28079.456657427705
The predictions returned are affinities (KD) in nM. The "prediction_low" and "prediction_high" fields give the 5-95 percentile predictions across the models in the ensemble. The predictions above were generated with MHCflurry 0.9.2.
Your exact predictions may vary slightly from these (up to about 1 nM) depending on the Keras backend in use and other numerical details. Different versions of MHCflurry can of course give results considerably different from these.
You can also specify the input and output as CSV files. Run "mhcflurry-predict -h" for details.
Fitting your own models
Library usage
The MHCflurry Python API exposes additional options and features beyond those supported by the commandline tools. This tutorial gives a basic overview of the most important functionality. See the API Documentation for further details.
The "Class1AffinityPredictor" class is the primary user-facing interface.
>>> import mhcflurry >>> print("MHCflurry version: %s" % (mhcflurry.__version__)) MHCflurry version: 1.0.0 >>> >>> # Load downloaded predictor >>> predictor = mhcflurry.Class1AffinityPredictor.load() >>> print(predictor.supported_alleles) ['BoLA-6*13:01', 'Eqca-1*01:01', 'H-2-Db', 'H-2-Dd', 'H-2-Kb', 'H-2-Kd', 'H-2-Kk', 'H-2-Ld', 'HLA-A*01:01', 'HLA-A*02:01', 'HLA-A*02:02', 'HLA-A*02:03', 'HLA-A*02:05', 'HLA-A*02:06', 'HLA-A*02:07', 'HLA-A*02:11', 'HLA-A*02:12', 'HLA-A*02:16', 'HLA-A*02:17', 'HLA-A*02:19', 'HLA-A*02:50', 'HLA-A*03:01', 'HLA-A*11:01', 'HLA-A*23:01', 'HLA-A*24:01', 'HLA-A*24:02', 'HLA-A*24:03', 'HLA-A*25:01', 'HLA-A*26:01', 'HLA-A*26:02', 'HLA-A*26:03', 'HLA-A*29:02', 'HLA-A*30:01', 'HLA-A*30:02', 'HLA-A*31:01', 'HLA-A*32:01', 'HLA-A*32:07', 'HLA-A*33:01', 'HLA-A*66:01', 'HLA-A*68:01', 'HLA-A*68:02', 'HLA-A*68:23', 'HLA-A*69:01', 'HLA-A*80:01', 'HLA-B*07:01', 'HLA-B*07:02', 'HLA-B*08:01', 'HLA-B*08:02', 'HLA-B*08:03', 'HLA-B*14:02', 'HLA-B*15:01', 'HLA-B*15:02', 'HLA-B*15:03', 'HLA-B*15:09', 'HLA-B*15:17', 'HLA-B*15:42', 'HLA-B*18:01', 'HLA-B*27:01', 'HLA-B*27:03', 'HLA-B*27:04', 'HLA-B*27:05', 'HLA-B*27:06', 'HLA-B*27:20', 'HLA-B*35:01', 'HLA-B*35:03', 'HLA-B*35:08', 'HLA-B*37:01', 'HLA-B*38:01', 'HLA-B*39:01', 'HLA-B*40:01', 'HLA-B*40:02', 'HLA-B*42:01', 'HLA-B*44:01', 'HLA-B*44:02', 'HLA-B*44:03', 'HLA-B*45:01', 'HLA-B*45:06', 'HLA-B*46:01', 'HLA-B*48:01', 'HLA-B*51:01', 'HLA-B*53:01', 'HLA-B*54:01', 'HLA-B*57:01', 'HLA-B*58:01', 'HLA-B*73:01', 'HLA-B*83:01', 'HLA-C*03:03', 'HLA-C*03:04', 'HLA-C*04:01', 'HLA-C*05:01', 'HLA-C*06:02', 'HLA-C*07:01', 'HLA-C*07:02', 'HLA-C*08:02', 'HLA-C*12:03', 'HLA-C*14:02', 'HLA-C*15:02', 'Mamu-A*01:01', 'Mamu-A*02:01', 'Mamu-A*02:0102', 'Mamu-A*07:01', 'Mamu-A*07:0103', 'Mamu-A*11:01', 'Mamu-A*22:01', 'Mamu-A*26:01', 'Mamu-B*01:01', 'Mamu-B*03:01', 'Mamu-B*08:01', 'Mamu-B*10:01', 'Mamu-B*17:01', 'Mamu-B*17:04', 'Mamu-B*39:01', 'Mamu-B*52:01', 'Mamu-B*66:01', 'Mamu-B*83:01', 'Mamu-B*87:01', 'Patr-A*01:01', 'Patr-A*03:01', 'Patr-A*04:01', 'Patr-A*07:01', 'Patr-A*09:01', 'Patr-B*01:01', 'Patr-B*13:01', 'Patr-B*24:01']# coding: utf-8
# In[22]:
import pandas import numpy import seaborn import logging from matplotlib import pyplot
import mhcflurry
# # Download data and models
# In[2]:
get_ipython().system('mhcflurry-downloads fetch')
# # Making predictions with Class1AffinityPredictor
# In[3]:
help(mhcflurry.Class1AffinityPredictor)
# In[4]:
downloaded_predictor = mhcflurry.Class1AffinityPredictor.load()
# In[5]:
downloaded_predictor.predict(allele="HLA-A0201", peptides=["SIINFEKL", "SIINFEQL"])
# In[6]:
downloaded_predictor.predict_to_dataframe(allele="HLA-A0201", peptides=["SIINFEKL", "SIINFEQL"])
# In[7]:
downloaded_predictor.predict_to_dataframe(alleles=["HLA-A0201", "HLA-B*57:01"], peptides=["SIINFEKL", "SIINFEQL"])
# In[8]:
- downloaded_predictor.predict_to_dataframe(
- allele="HLA-A0201", peptides=["SIINFEKL", "SIINFEQL"], include_individual_model_predictions=True)
# In[9]:
- downloaded_predictor.predict_to_dataframe(
- allele="HLA-A0201", peptides=["SIINFEKL", "SIINFEQL", "TAAAALANGGGGGGGG"], throw=False) # Without throw=False, you'll get a ValueError for invalid peptides or alleles
# # Instantiating a Class1AffinityPredictor from a saved model on disk
# In[10]:
models_dir = mhcflurry.downloads.get_path("models_class1", "models") models_dir
# In[11]:
# This will be the same predictor we instantiated above. We're just being explicit about what models to load. downloaded_predictor = mhcflurry.Class1AffinityPredictor.load(models_dir) downloaded_predictor.predict(["SIINFEKL", "SIQNPEKP", "SYNFPEPI"], allele="HLA-A0301")
# # Fit a model: first load some data
# In[12]:
# This is the data the downloaded models were trained on data_path = mhcflurry.downloads.get_path("data_curated", "curated_training_data.csv.bz2") data_path
# In[13]:
data_df = pandas.read_csv(data_path) data_df
# # Fit a model: Low level Class1NeuralNetwork interface
# In[14]:
# We'll use mostly the default hyperparameters here. Could also specify them as kwargs. new_model = mhcflurry.Class1NeuralNetwork(layer_sizes=[16]) new_model.hyperparameters
# In[16]:
- train_data = data_df.loc[
- (data_df.allele == "HLA-B*57:01") & (data_df.peptide.str.len() >= 8) & (data_df.peptide.str.len() <= 15)
] get_ipython().magic('time new_model.fit(train_data.peptide.values, train_data.measurement_value.values)')
# In[17]:
new_model.predict(["SYNPEPII"])
# # Fit a model: high level Class1AffinityPredictor interface
# In[18]:
affinity_predictor = mhcflurry.Class1AffinityPredictor()
# This can be called any number of times, for example on different alleles, to build up the ensembles. affinity_predictor.fit_allele_specific_predictors( n_models=1, architecture_hyperparameters={"layer_sizes": [16], "max_epochs": 10}, peptides=train_data.peptide.values, affinities=train_data.measurement_value.values, allele="HLA-B*57:01", )
# In[19]:
affinity_predictor.predict(["SYNPEPII"], allele="HLA-B*57:01")
# # Save and restore the fit model
# In[20]:
get_ipython().system('mkdir /tmp/saved-affinity-predictor') affinity_predictor.save("/tmp/saved-affinity-predictor") get_ipython().system('ls /tmp/saved-affinity-predictor')
# In[21]:
affinity_predictor2 = mhcflurry.Class1AffinityPredictor.load("/tmp/saved-affinity-predictor") affinity_predictor2.predict(["SYNPEPII"], allele="HLA-B*57:01")
Supported alleles and peptide lengths
Models released with the current version of MHCflurry (1.0.0) support peptides of length 8-15 and the following 124 alleles:
BoLA-6*13:01, Eqca-1*01:01, H-2-Db, H-2-Dd, H-2-Kb, H-2-Kd, H-2-Kk, H-2-Ld, HLA-A*01:01, HLA-A*02:01, HLA-A*02:02, HLA-A*02:03, HLA-A*02:05, HLA-A*02:06, HLA-A*02:07, HLA-A*02:11, HLA-A*02:12, HLA-A*02:16, HLA-A*02:17, HLA-A*02:19, HLA-A*02:50, HLA-A*03:01, HLA-A*11:01, HLA-A*23:01, HLA-A*24:01, HLA-A*24:02, HLA-A*24:03, HLA-A*25:01, HLA-A*26:01, HLA-A*26:02, HLA-A*26:03, HLA-A*29:02, HLA-A*30:01, HLA-A*30:02, HLA-A*31:01, HLA-A*32:01, HLA-A*32:07, HLA-A*33:01, HLA-A*66:01, HLA-A*68:01, HLA-A*68:02, HLA-A*68:23, HLA-A*69:01, HLA-A*80:01, HLA-B*07:01, HLA-B*07:02, HLA-B*08:01, HLA-B*08:02, HLA-B*08:03, HLA-B*14:02, HLA-B*15:01, HLA-B*15:02, HLA-B*15:03, HLA-B*15:09, HLA-B*15:17, HLA-B*15:42, HLA-B*18:01, HLA-B*27:01, HLA-B*27:03, HLA-B*27:04, HLA-B*27:05, HLA-B*27:06, HLA-B*27:20, HLA-B*35:01, HLA-B*35:03, HLA-B*35:08, HLA-B*37:01, HLA-B*38:01, HLA-B*39:01, HLA-B*40:01, HLA-B*40:02, HLA-B*42:01, HLA-B*44:01, HLA-B*44:02, HLA-B*44:03, HLA-B*45:01, HLA-B*45:06, HLA-B*46:01, HLA-B*48:01, HLA-B*51:01, HLA-B*53:01, HLA-B*54:01, HLA-B*57:01, HLA-B*58:01, HLA-B*73:01, HLA-B*83:01, HLA-C*03:03, HLA-C*03:04, HLA-C*04:01, HLA-C*05:01, HLA-C*06:02, HLA-C*07:01, HLA-C*07:02, HLA-C*08:02, HLA-C*12:03, HLA-C*14:02, HLA-C*15:02, Mamu-A*01:01, Mamu-A*02:01, Mamu-A*02:0102, Mamu-A*07:01, Mamu-A*07:0103, Mamu-A*11:01, Mamu-A*22:01, Mamu-A*26:01, Mamu-B*01:01, Mamu-B*03:01, Mamu-B*08:01, Mamu-B*10:01, Mamu-B*17:01, Mamu-B*17:04, Mamu-B*39:01, Mamu-B*52:01, Mamu-B*66:01, Mamu-B*83:01, Mamu-B*87:01, Patr-A*01:01, Patr-A*03:01, Patr-A*04:01, Patr-A*07:01, Patr-A*09:01, Patr-B*01:01, Patr-B*13:01, Patr-B*24:01