-
Tim O'Donnell authoredTim O'Donnell authored
GENERATE.sh 7.47 KiB
#!/bin/bash
#
# Uses an HPC cluster (Mount Sinai chimera cluster, which uses lsf job
# scheduler). This would need to be modified for other sites.
#
# Usage: GENERATE.sh <local|cluster> <fresh|continue-incomplete>
#
set -e
set -x
DOWNLOAD_NAME=models_class1_pan_variants
SCRATCH_DIR=${TMPDIR-/tmp}/mhcflurry-downloads-generation
SCRIPT_ABSOLUTE_PATH="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)/$(basename "${BASH_SOURCE[0]}")"
SCRIPT_DIR=$(dirname "$SCRIPT_ABSOLUTE_PATH")
if [ "$1" != "cluster" ]
then
GPUS=$(nvidia-smi -L 2> /dev/null | wc -l) || GPUS=0
echo "Detected GPUS: $GPUS"
PROCESSORS=$(getconf _NPROCESSORS_ONLN)
echo "Detected processors: $PROCESSORS"
if [ "$GPUS" -eq "0" ]; then
NUM_JOBS=${NUM_JOBS-1}
else
NUM_JOBS=${NUM_JOBS-$GPUS}
fi
echo "Num jobs: $NUM_JOBS"
PARALLELISM_ARGS+=" --num-jobs $NUM_JOBS --max-tasks-per-worker 1 --gpus $GPUS --max-workers-per-gpu 1"
else
PARALLELISM_ARGS+=" --cluster-parallelism --cluster-max-retries 3 --cluster-submit-command bsub --cluster-results-workdir $HOME/mhcflurry-scratch --cluster-script-prefix-path $SCRIPT_DIR/cluster_submit_script_header.mssm_hpc.gpu.lsf"
fi
mkdir -p "$SCRATCH_DIR"
if [ "$2" != "continue-incomplete" ]
then
echo "Fresh run"
rm -rf "$SCRATCH_DIR/$DOWNLOAD_NAME"
mkdir "$SCRATCH_DIR/$DOWNLOAD_NAME"
else
echo "Continuing incomplete run"
fi
# Send stdout and stderr to a logfile included with the archive.
LOG="$SCRATCH_DIR/$DOWNLOAD_NAME/LOG.$(date +%s).txt"
exec > >(tee -ia "$LOG")
exec 2> >(tee -ia "$LOG" >&2)
# Log some environment info
echo "Invocation: $0 $@"
date
pip freeze
git status
cd $SCRATCH_DIR/$DOWNLOAD_NAME
export OMP_NUM_THREADS=1
export PYTHONUNBUFFERED=1
if [ "$2" != "continue-incomplete" ]
then
cp $SCRIPT_DIR/generate_hyperparameters.production.py .
cp $SCRIPT_DIR/generate_hyperparameters.py .
cp $SCRIPT_DIR/reassign_mass_spec_training_data.py .
python generate_hyperparameters.production.py > hyperparameters.production.yaml
python generate_hyperparameters.py hyperparameters.production.yaml no_pretrain > hyperparameters.no_pretrain.yaml
python generate_hyperparameters.py hyperparameters.no_pretrain.yaml single_hidden > hyperparameters.single_hidden_no_pretrain.yaml
python generate_hyperparameters.py hyperparameters.production.yaml compact_peptide > hyperparameters.compact_peptide.yaml
fi
VARIANTS=( no_additional_ms_ms_only_0nm ms_only_0nm no_additional_ms_0nm 0nm 500nm no_additional_ms no_pretrain compact_peptide 34mer_sequence single_hidden_no_pretrain affinity_only )
for kind in "${VARIANTS[@]}"
do
CONTINUE_INCOMPLETE_ARGS=""
if [ "$2" == "continue-incomplete" ] && [ -d "models.unselected.${kind}" ]
then
echo "Will continue existing run: $kind"
CONTINUE_INCOMPLETE_ARGS="--continue-incomplete"
fi
ALLELE_SEQUENCES="$(mhcflurry-downloads path allele_sequences)/allele_sequences.csv"
HYPERPARAMETERS=hyperparameters.$kind.yaml
if [ "$kind" == "34mer_sequence" ]
then
ALLELE_SEQUENCES="$(mhcflurry-downloads path allele_sequences)/allele_sequences.no_differentiation.csv"
HYPERPARAMETERS=hyperparameters.production.yaml
fi
TRAINING_DATA="$(mhcflurry-downloads path data_curated)/curated_training_data.csv.bz2"
if [ "$kind" == "no_additional_ms" ]
then
TRAINING_DATA="$(mhcflurry-downloads path data_curated)/curated_training_data.no_additional_ms.csv.bz2"
HYPERPARAMETERS=hyperparameters.production.yaml
fi
if [ "$kind" == "no_additional_ms_ms_only_0nm" ]
then
TRAINING_DATA="train_data.$kind.csv"
python reassign_mass_spec_training_data.py \
"$(mhcflurry-downloads path data_curated)/curated_training_data.no_additional_ms.csv.bz2" \
--set-measurement-value 0 \
--drop-negative-ms \
--ms-only \
--out-csv "$TRAINING_DATA"
HYPERPARAMETERS=hyperparameters.production.yaml
fi
if [ "$kind" == "no_additional_ms_0nm" ]
then
TRAINING_DATA="train_data.$kind.csv"
python reassign_mass_spec_training_data.py \
"$(mhcflurry-downloads path data_curated)/curated_training_data.no_additional_ms.csv.bz2" \
--set-measurement-value 0 \
--out-csv "$TRAINING_DATA"
HYPERPARAMETERS=hyperparameters.production.yaml
fi
if [ "$kind" == "0nm" ]
then
TRAINING_DATA="train_data.$kind.csv"
python reassign_mass_spec_training_data.py \
"$(mhcflurry-downloads path data_curated)/curated_training_data.csv.bz2" \
--set-measurement-value 0 \
--out-csv "$TRAINING_DATA"
HYPERPARAMETERS=hyperparameters.production.yaml
fi
if [ "$kind" == "500nm" ]
then
TRAINING_DATA="train_data.$kind.csv"
python reassign_mass_spec_training_data.py \
"$(mhcflurry-downloads path data_curated)/curated_training_data.csv.bz2" \
--set-measurement-value 500 \
--out-csv "$TRAINING_DATA"
HYPERPARAMETERS=hyperparameters.production.yaml
fi
if [ "$kind" == "ms_only_0nm" ]
then
TRAINING_DATA="train_data.$kind.csv"
python reassign_mass_spec_training_data.py \
"$(mhcflurry-downloads path data_curated)/curated_training_data.mass_spec.csv.bz2" \
--set-measurement-value 0 \
--drop-negative-ms \
--out-csv "$TRAINING_DATA"
HYPERPARAMETERS=hyperparameters.production.yaml
fi
if [ "$kind" == "affinity_only" ]
then
TRAINING_DATA="$(mhcflurry-downloads path data_curated)/curated_training_data.affinity.csv.bz2"
HYPERPARAMETERS=hyperparameters.production.yaml
fi
mhcflurry-class1-train-pan-allele-models \
--data "$TRAINING_DATA" \
--allele-sequences "$ALLELE_SEQUENCES" \
--pretrain-data "$(mhcflurry-downloads path random_peptide_predictions)/predictions.csv.bz2" \
--held-out-measurements-per-allele-fraction-and-max 0.25 100 \
--num-folds 4 \
--hyperparameters "$HYPERPARAMETERS" \
--out-models-dir $(pwd)/models.unselected.${kind} \
--worker-log-dir "$SCRATCH_DIR/$DOWNLOAD_NAME" \
$PARALLELISM_ARGS $CONTINUE_INCOMPLETE_ARGS
done
echo "Done training. Beginning model selection."
for kind in "${VARIANTS[@]}"
do
MODELS_DIR="models.unselected.${kind}"
mhcflurry-class1-select-pan-allele-models \
--data "$MODELS_DIR/train_data.csv.bz2" \
--models-dir "$MODELS_DIR" \
--out-models-dir models.${kind} \
--min-models 2 \
--max-models 8 \
$PARALLELISM_ARGS
cp "$MODELS_DIR/train_data.csv.bz2" "models.${kind}/train_data.csv.bz2"
done
cp $SCRIPT_ABSOLUTE_PATH .
bzip2 -f "$LOG"
for i in $(ls LOG-worker.*.txt) ; do bzip2 -f $i ; done
RESULT="$SCRATCH_DIR/${DOWNLOAD_NAME}.$(date +%Y%m%d).tar.bz2"
tar -cjf "$RESULT" *
echo "Created archive: $RESULT"
# Split into <2GB chunks for GitHub
PARTS="${RESULT}.part."
# Check for pre-existing part files and rename them.
for i in $(ls "${PARTS}"* )
do
DEST="${i}.OLD.$(date +%s)"
echo "WARNING: already exists: $i . Moving to $DEST"
mv $i $DEST
done
split -b 2000M "$RESULT" "$PARTS"
echo "Split into parts:"
ls -lh "${PARTS}"*
# Write out just the selected models
# Move unselected into a hidden dir so it is excluded in the glob (*).
mkdir .ignored
mv models.unselected.* .ignored/
RESULT="$SCRATCH_DIR/${DOWNLOAD_NAME}.selected.$(date +%Y%m%d).tar.bz2"
tar -cjf "$RESULT" *
mv .ignored/* . && rmdir .ignored
echo "Created archive: $RESULT"