-
Tim O'Donnell authored
Docs improvememnts, more flexible Keras dependency, drop typechecks dependency, remove some unused functions
Tim O'Donnell authoredDocs improvememnts, more flexible Keras dependency, drop typechecks dependency, remove some unused functions
common.py 2.85 KiB
# Copyright (c) 2016. Mount Sinai School of Medicine
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function, division, absolute_import
import itertools
import collections
import logging
import hashlib
import time
import sys
from os import environ
import numpy
import pandas
from . import amino_acid
def configure_logging(verbose=False):
"""
Configure logging module using defaults.
Parameters
----------
verbose : boolean
If true, output will be at level DEBUG, otherwise, INFO.
"""
level = logging.DEBUG if verbose else logging.INFO
logging.basicConfig(
format="%(asctime)s.%(msecs)d %(levelname)s %(module)s - %(funcName)s:"
" %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
stream=sys.stderr,
level=level)
def amino_acid_distribution(peptides, smoothing=0.0):
"""
Compute the fraction of each amino acid across a collection of peptides.
Parameters
----------
peptides : list of string
smoothing : float, optional
Small number (e.g. 0.01) to add to all amino acid fractions. The higher
the number the more uniform the distribution.
Returns
-------
pandas.Series indexed by amino acids
"""
peptides = pandas.Series(peptides)
aa_counts = pandas.Series(peptides.map(collections.Counter).sum())
normalized = aa_counts / aa_counts.sum()
if smoothing:
normalized += smoothing
normalized /= normalized.sum()
return normalized
def random_peptides(num, length=9, distribution=None):
"""
Generate random peptides (kmers).
Parameters
----------
num : int
Number of peptides to return
length : int
Length of each peptide
distribution : pandas.Series
Maps 1-letter amino acid abbreviations to
probabilities. If not specified a uniform
distribution is used.
Returns
----------
list of string
"""
if num == 0:
return []
if distribution is None:
distribution = pandas.Series(
1, index=sorted(amino_acid.COMMON_AMINO_ACIDS))
distribution /= distribution.sum()
return [
''.join(peptide_sequence)
for peptide_sequence in
numpy.random.choice(
distribution.index,
p=distribution.values,
size=(int(num), int(length)))
]