-
Tim O'Donnell authoredTim O'Donnell authored
class1_affinity_predictor.py 41.49 KiB
import collections
import hashlib
import json
import logging
import time
import warnings
from os.path import join, exists, abspath
from os import mkdir
from socket import gethostname
from getpass import getuser
from functools import partial
import mhcnames
import numpy
import pandas
from numpy.testing import assert_equal
from six import string_types
from .class1_neural_network import Class1NeuralNetwork
from .common import random_peptides
from .downloads import get_default_class1_models_dir
from .encodable_sequences import EncodableSequences
from .percent_rank_transform import PercentRankTransform
from .regression_target import to_ic50
from .version import __version__
from .ensemble_centrality import CENTRALITY_MEASURES
from .allele_encoding import AlleleEncoding
# Default function for combining predictions across models in an ensemble.
# See ensemble_centrality.py for other options.
DEFAULT_CENTRALITY_MEASURE = "mean"
class Class1AffinityPredictor(object):
"""
High-level interface for peptide/MHC I binding affinity prediction.
This class manages low-level `Class1NeuralNetwork` instances, each of which
wraps a single Keras network. The purpose of `Class1AffinityPredictor` is to
implement ensembles, handling of multiple alleles, and predictor loading and
saving.
"""
def __init__(
self,
allele_to_allele_specific_models=None,
class1_pan_allele_models=None,
allele_to_fixed_length_sequence=None,
manifest_df=None,
allele_to_percent_rank_transform=None):
"""
Parameters
----------
allele_to_allele_specific_models : dict of string -> list of `Class1NeuralNetwork`
Ensemble of single-allele models to use for each allele.
class1_pan_allele_models : list of `Class1NeuralNetwork`
Ensemble of pan-allele models.
allele_to_fixed_length_sequence : dict of string -> string
Required only if class1_pan_allele_models is specified.
manifest_df : `pandas.DataFrame`, optional
Must have columns: model_name, allele, config_json, model.
Only required if you want to update an existing serialization of a
Class1AffinityPredictor. Otherwise this dataframe will be generated
automatically based on the supplied models.
allele_to_percent_rank_transform : dict of string -> `PercentRankTransform`, optional
`PercentRankTransform` instances to use for each allele
"""
if allele_to_allele_specific_models is None:
allele_to_allele_specific_models = {}
if class1_pan_allele_models is None:
class1_pan_allele_models = []
if class1_pan_allele_models:
assert allele_to_fixed_length_sequence, "Allele sequences required"
self.allele_to_allele_specific_models = allele_to_allele_specific_models
self.class1_pan_allele_models = class1_pan_allele_models
self.allele_to_fixed_length_sequence = allele_to_fixed_length_sequence
if manifest_df is None:
rows = []
for (i, model) in enumerate(self.class1_pan_allele_models):
rows.append((
self.model_name("pan-class1", i),
"pan-class1",
json.dumps(model.get_config()),
model
))
for (allele, models) in self.allele_to_allele_specific_models.items():
for (i, model) in enumerate(models):
rows.append((
self.model_name(allele, i),
allele,
json.dumps(model.get_config()),
model
))
manifest_df = pandas.DataFrame(
rows,
columns=["model_name", "allele", "config_json", "model"])
self.manifest_df = manifest_df
if not allele_to_percent_rank_transform:
allele_to_percent_rank_transform = {}
self.allele_to_percent_rank_transform = allele_to_percent_rank_transform
@property
def neural_networks(self):
"""
List of the neural networks in the ensemble.
Returns
-------
list of `Class1NeuralNetwork`
"""
result = []
for models in self.allele_to_allele_specific_models.values():
result.extend(models)
result.extend(self.class1_pan_allele_models)
return result
@classmethod
def merge(cls, predictors):
"""
Merge the ensembles of two or more `Class1AffinityPredictor` instances.
Note: the resulting merged predictor will NOT have calibrated percentile
ranks. Call `calibrate_percentile_ranks` on it if these are needed.
Parameters
----------
predictors : sequence of `Class1AffinityPredictor`
Returns
-------
`Class1AffinityPredictor` instance
"""
assert len(predictors) > 0
if len(predictors) == 1:
return predictors[0]
allele_to_allele_specific_models = collections.defaultdict(list)
class1_pan_allele_models = []
allele_to_fixed_length_sequence = predictors[0].allele_to_fixed_length_sequence
for predictor in predictors:
for (allele, networks) in (
predictor.allele_to_allele_specific_models.items()):
allele_to_allele_specific_models[allele].extend(networks)
class1_pan_allele_models.extend(
predictor.class1_pan_allele_models)
return Class1AffinityPredictor(
allele_to_allele_specific_models=allele_to_allele_specific_models,
class1_pan_allele_models=class1_pan_allele_models,
allele_to_fixed_length_sequence=allele_to_fixed_length_sequence
)
def merge_in_place(self, others):
"""
Add the models present other predictors into the current predictor.
Parameters
----------
others : list of Class1AffinityPredictor
Other predictors to merge into the current predictor.
Returns
-------
list of string : names of newly added models
"""
new_model_names = []
for predictor in others:
for model in predictor.class1_pan_allele_models:
model_name = self.model_name(
"pan-class1",
len(self.class1_pan_allele_models))
self.class1_pan_allele_models.append(model)
row = pandas.Series(collections.OrderedDict([
("model_name", model_name),
("allele", "pan-class1"),
("config_json", json.dumps(model.get_config())),
("model", model),
])).to_frame().T
self.manifest_df = pandas.concat(
[self.manifest_df, row], ignore_index=True)
new_model_names.append(model_name)
for allele in predictor.allele_to_allele_specific_models:
if allele not in self.allele_to_allele_specific_models:
self.allele_to_allele_specific_models[allele] = []
current_models = self.allele_to_allele_specific_models[allele]
for model in predictor.allele_to_allele_specific_models[allele]:
model_name = self.model_name(allele, len(current_models))
row = pandas.Series(collections.OrderedDict([
("model_name", model_name),
("allele", allele),
("config_json", json.dumps(model.get_config())),
("model", model),
])).to_frame().T
self.manifest_df = pandas.concat(
[self.manifest_df, row], ignore_index=True)
current_models.append(model)
new_model_names.append(model_name)
return new_model_names
@property
def supported_alleles(self):
"""
Alleles for which predictions can be made.
Returns
-------
list of string
"""
result = set(self.allele_to_allele_specific_models)
if self.allele_to_fixed_length_sequence:
result = result.union(self.allele_to_fixed_length_sequence)
return sorted(result)
@property
def supported_peptide_lengths(self):
"""
(minimum, maximum) lengths of peptides supported by *all models*,
inclusive.
Returns
-------
(int, int) tuple
"""
models = list(self.class1_pan_allele_models)
for allele_models in self.allele_to_allele_specific_models.values():
models.extend(allele_models)
length_ranges = [model.supported_peptide_lengths for model in models]
return (
max(lower for (lower, upper) in length_ranges),
min(upper for (lower, upper) in length_ranges))
def save(self, models_dir, model_names_to_write=None):
"""
Serialize the predictor to a directory on disk. If the directory does
not exist it will be created.
The serialization format consists of a file called "manifest.csv" with
the configurations of each Class1NeuralNetwork, along with per-network
files giving the model weights. If there are pan-allele predictors in
the ensemble, the allele sequences are also stored in the
directory. There is also a small file "index.txt" with basic metadata:
when the models were trained, by whom, on what host.
Parameters
----------
models_dir : string
Path to directory
model_names_to_write : list of string, optional
Only write the weights for the specified models. Useful for
incremental updates during training.
"""
num_models = len(self.class1_pan_allele_models) + sum(
len(v) for v in self.allele_to_allele_specific_models.values())
assert len(self.manifest_df) == num_models, (
"Manifest seems out of sync with models: %d vs %d entries" % (
len(self.manifest_df), num_models))
if model_names_to_write is None:
# Write all models
model_names_to_write = self.manifest_df.model_name.values
if not exists(models_dir):
mkdir(models_dir)
sub_manifest_df = self.manifest_df.ix[
self.manifest_df.model_name.isin(model_names_to_write)
]
for (_, row) in sub_manifest_df.iterrows():
weights_path = self.weights_path(models_dir, row.model_name)
Class1AffinityPredictor.save_weights(
row.model.get_weights(), weights_path)
logging.info("Wrote: %s" % weights_path)
write_manifest_df = self.manifest_df[[
c for c in self.manifest_df.columns if c != "model"
]]
manifest_path = join(models_dir, "manifest.csv")
write_manifest_df.to_csv(manifest_path, index=False)
logging.info("Wrote: %s" % manifest_path)
# Write "info.txt"
info_path = join(models_dir, "info.txt")
rows = [
("trained on", time.asctime()),
("package ", "mhcflurry %s" % __version__),
("hostname ", gethostname()),
("user ", getuser()),
]
pandas.DataFrame(rows).to_csv(
info_path, sep="\t", header=False, index=False)
if self.allele_to_fixed_length_sequence is not None:
allele_to_sequence_df = pandas.DataFrame(
list(self.allele_to_fixed_length_sequence.items()),
columns=['allele', 'sequence']
)
allele_to_sequence_df.to_csv(
join(models_dir, "allele_sequences.csv"), index=False)
logging.info("Wrote: %s" % join(models_dir, "allele_sequences.csv"))
if self.allele_to_percent_rank_transform:
percent_ranks_df = None
for (allele, transform) in self.allele_to_percent_rank_transform.items():
series = transform.to_series()
if percent_ranks_df is None:
percent_ranks_df = pandas.DataFrame(index=series.index)
assert_equal(series.index.values, percent_ranks_df.index.values)
percent_ranks_df[allele] = series
percent_ranks_path = join(models_dir, "percent_ranks.csv")
percent_ranks_df.to_csv(
percent_ranks_path,
index=True,
index_label="bin")
logging.info("Wrote: %s" % percent_ranks_path)
@staticmethod
def load(models_dir=None, max_models=None):
"""
Deserialize a predictor from a directory on disk.
Parameters
----------
models_dir : string
Path to directory
max_models : int, optional
Maximum number of `Class1NeuralNetwork` instances to load
Returns
-------
`Class1AffinityPredictor` instance
"""
if models_dir is None:
models_dir = get_default_class1_models_dir()
manifest_path = join(models_dir, "manifest.csv")
manifest_df = pandas.read_csv(manifest_path, nrows=max_models)
allele_to_allele_specific_models = collections.defaultdict(list)
class1_pan_allele_models = []
all_models = []
for (_, row) in manifest_df.iterrows():
weights_filename = Class1AffinityPredictor.weights_path(
models_dir, row.model_name)
config = json.loads(row.config_json)
# We will lazy-load weights when the network is used.
model = Class1NeuralNetwork.from_config(
config,
weights_loader=partial(
Class1AffinityPredictor.load_weights,
abspath(weights_filename)))
if row.allele == "pan-class1":
class1_pan_allele_models.append(model)
else:
allele_to_allele_specific_models[row.allele].append(model)
all_models.append(model)
manifest_df["model"] = all_models
allele_to_fixed_length_sequence = None
if exists(join(models_dir, "allele_sequences.csv")):
allele_to_fixed_length_sequence = pandas.read_csv(
join(models_dir, "allele_sequences.csv"),
index_col="allele").to_dict()
allele_to_percent_rank_transform = {}
percent_ranks_path = join(models_dir, "percent_ranks.csv")
if exists(percent_ranks_path):
percent_ranks_df = pandas.read_csv(percent_ranks_path, index_col=0)
for allele in percent_ranks_df.columns:
allele_to_percent_rank_transform[allele] = (
PercentRankTransform.from_series(percent_ranks_df[allele]))
logging.info(
"Loaded %d class1 pan allele predictors, %d allele sequences, "
"%d percent rank distributions, and %d allele specific models: %s" % (
len(class1_pan_allele_models),
len(allele_to_fixed_length_sequence) if allele_to_fixed_length_sequence else 0,
len(allele_to_percent_rank_transform),
sum(len(v) for v in allele_to_allele_specific_models.values()),
", ".join(
"%s (%d)" % (allele, len(v))
for (allele, v)
in sorted(allele_to_allele_specific_models.items()))))
result = Class1AffinityPredictor(
allele_to_allele_specific_models=allele_to_allele_specific_models,
class1_pan_allele_models=class1_pan_allele_models,
allele_to_fixed_length_sequence=allele_to_fixed_length_sequence,
manifest_df=manifest_df,
allele_to_percent_rank_transform=allele_to_percent_rank_transform,
)
return result
@staticmethod
def model_name(allele, num):
"""
Generate a model name
Parameters
----------
allele : string
num : int
Returns
-------
string
"""
random_string = hashlib.sha1(
str(time.time()).encode()).hexdigest()[:16]
return "%s-%d-%s" % (allele.upper(), num, random_string)
@staticmethod
def weights_path(models_dir, model_name):
"""
Generate the path to the weights file for a model
Parameters
----------
models_dir : string
model_name : string
Returns
-------
string
"""
return join(models_dir, "weights_%s.npz" % model_name)
def fit_allele_specific_predictors(
self,
n_models,
architecture_hyperparameters_list,
allele,
peptides,
affinities,
inequalities=None,
train_rounds=None,
models_dir_for_save=None,
verbose=0,
progress_preamble="",
progress_print_interval=5.0):
"""
Fit one or more allele specific predictors for a single allele using one
or more neural network architectures.
The new predictors are saved in the Class1AffinityPredictor instance
and will be used on subsequent calls to `predict`.
Parameters
----------
n_models : int
Number of neural networks to fit
architecture_hyperparameters_list : list of dict
List of hyperparameter sets.
allele : string
peptides : `EncodableSequences` or list of string
affinities : list of float
nM affinities
inequalities : list of string, each element one of ">", "<", or "="
See Class1NeuralNetwork.fit for details.
train_rounds : sequence of int
Each training point i will be used on training rounds r for which
train_rounds[i] > r, r >= 0.
models_dir_for_save : string, optional
If specified, the Class1AffinityPredictor is (incrementally) written
to the given models dir after each neural network is fit.
verbose : int
Keras verbosity
progress_preamble : string
Optional string of information to include in each progress update
progress_print_interval : float
How often (in seconds) to print progress. Set to None to disable.
Returns
-------
list of `Class1NeuralNetwork`
"""
allele = mhcnames.normalize_allele_name(allele)
if allele not in self.allele_to_allele_specific_models:
self.allele_to_allele_specific_models[allele] = []
encodable_peptides = EncodableSequences.create(peptides)
peptides_affinities_inequalities_per_round = [
(encodable_peptides, affinities, inequalities)
]
if train_rounds is not None:
for round in sorted(set(train_rounds)):
round_mask = train_rounds > round
if round_mask.any():
sub_encodable_peptides = EncodableSequences.create(
encodable_peptides.sequences[round_mask])
peptides_affinities_inequalities_per_round.append((
sub_encodable_peptides,
affinities[round_mask],
None if inequalities is None else inequalities[round_mask]))
n_rounds = len(peptides_affinities_inequalities_per_round)
n_architectures = len(architecture_hyperparameters_list)
# Adjust progress info to indicate number of models and
# architectures.
pieces = []
if n_models > 1:
pieces.append("Model {model_num:2d} / {n_models:2d}")
if n_architectures > 1:
pieces.append(
"Architecture {architecture_num:2d} / {n_architectures:2d}")
if len(peptides_affinities_inequalities_per_round) > 1:
pieces.append("Round {round:2d} / {n_rounds:2d}")
pieces.append("{n_peptides:4d} peptides")
progress_preamble_template = "[ %s ] {user_progress_preamble}" % (
", ".join(pieces))
models = []
for model_num in range(n_models):
for (architecture_num, architecture_hyperparameters) in enumerate(
architecture_hyperparameters_list):
model = Class1NeuralNetwork(**architecture_hyperparameters)
for round_num in range(n_rounds):
(round_peptides, round_affinities, round_inequalities) = (
peptides_affinities_inequalities_per_round[round_num]
)
model.fit(
round_peptides,
round_affinities,
inequalities=round_inequalities,
verbose=verbose,
progress_preamble=progress_preamble_template.format(
n_peptides=len(round_peptides),
round=round_num,
n_rounds=n_rounds,
user_progress_preamble=progress_preamble,
model_num=model_num + 1,
n_models=n_models,
architecture_num=architecture_num + 1,
n_architectures=n_architectures),
progress_print_interval=progress_print_interval)
model_name = self.model_name(allele, model_num)
row = pandas.Series(collections.OrderedDict([
("model_name", model_name),
("allele", allele),
("config_json", json.dumps(model.get_config())),
("model", model),
])).to_frame().T
self.manifest_df = pandas.concat(
[self.manifest_df, row], ignore_index=True)
self.allele_to_allele_specific_models[allele].append(model)
if models_dir_for_save:
self.save(
models_dir_for_save, model_names_to_write=[model_name])
models.append(model)
return models
def fit_class1_pan_allele_models(
self,
n_models,
architecture_hyperparameters,
alleles,
peptides,
affinities,
inequalities,
models_dir_for_save=None,
verbose=1,
progress_preamble="",
progress_print_interval=5.0):
"""
Fit one or more pan-allele predictors using a single neural network
architecture.
The new predictors are saved in the Class1AffinityPredictor instance
and will be used on subsequent calls to `predict`.
Parameters
----------
n_models : int
Number of neural networks to fit
architecture_hyperparameters : dict
alleles : list of string
Allele names (not sequences) corresponding to each peptide
peptides : `EncodableSequences` or list of string
affinities : list of float
nM affinities
inequalities : list of string, each element one of ">", "<", or "="
See Class1NeuralNetwork.fit for details.
models_dir_for_save : string, optional
If specified, the Class1AffinityPredictor is (incrementally) written
to the given models dir after each neural network is fit.
verbose : int
Keras verbosity
progress_preamble : string
Optional string of information to include in each progress update
progress_print_interval : float
How often (in seconds) to print progress. Set to None to disable.
Returns
-------
list of `Class1NeuralNetwork`
"""
alleles = pandas.Series(alleles).map(mhcnames.normalize_allele_name)
allele_encoding = AlleleEncoding(
alleles,
allele_to_fixed_length_sequence=self.allele_to_fixed_length_sequence)
encodable_peptides = EncodableSequences.create(peptides)
models = []
for i in range(n_models):
logging.info("Training model %d / %d" % (i + 1, n_models))
model = Class1NeuralNetwork(**architecture_hyperparameters)
model.fit(
encodable_peptides,
affinities,
inequalities=inequalities,
allele_encoding=allele_encoding,
verbose=verbose,
progress_preamble=progress_preamble,
progress_print_interval=progress_print_interval)
model_name = self.model_name("pan-class1", i)
self.class1_pan_allele_models.append(model)
row = pandas.Series(collections.OrderedDict([
("model_name", model_name),
("allele", "pan-class1"),
("config_json", json.dumps(model.get_config())),
("model", model),
])).to_frame().T
self.manifest_df = pandas.concat(
[self.manifest_df, row], ignore_index=True)
if models_dir_for_save:
self.save(
models_dir_for_save, model_names_to_write=[model_name])
models.append(model)
return models
def percentile_ranks(self, affinities, allele=None, alleles=None, throw=True):
"""
Return percentile ranks for the given ic50 affinities and alleles.
The 'allele' and 'alleles' argument are as in the `predict` method.
Specify one of these.
Parameters
----------
affinities : sequence of float
nM affinities
allele : string
alleles : sequence of string
throw : boolean
If True, a ValueError will be raised in the case of unsupported
alleles. If False, a warning will be logged and NaN will be returned
for those percentile ranks.
Returns
-------
numpy.array of float
"""
if allele is not None:
try:
transform = self.allele_to_percent_rank_transform[allele]
return transform.transform(affinities)
except KeyError:
msg = "Allele %s has no percentile rank information" % allele
if throw:
raise ValueError(msg)
else:
warnings.warn(msg)
# Return NaNs
return numpy.ones(len(affinities)) * numpy.nan
if alleles is None:
raise ValueError("Specify allele or alleles")
df = pandas.DataFrame({"affinity": affinities})
df["allele"] = alleles
df["result"] = numpy.nan
for (allele, sub_df) in df.groupby("allele"):
df.loc[sub_df.index, "result"] = self.percentile_ranks(
sub_df.affinity, allele=allele, throw=throw)
return df.result.values
def predict(
self,
peptides,
alleles=None,
allele=None,
throw=True,
centrality_measure=DEFAULT_CENTRALITY_MEASURE):
"""
Predict nM binding affinities.
If multiple predictors are available for an allele, the predictions are
the geometric means of the individual model predictions.
One of 'allele' or 'alleles' must be specified. If 'allele' is specified
all predictions will be for the given allele. If 'alleles' is specified
it must be the same length as 'peptides' and give the allele
corresponding to each peptide.
Parameters
----------
peptides : `EncodableSequences` or list of string
alleles : list of string
allele : string
throw : boolean
If True, a ValueError will be raised in the case of unsupported
alleles or peptide lengths. If False, a warning will be logged and
the predictions for the unsupported alleles or peptides will be NaN.
centrality_measure : string or callable
Measure of central tendency to use to combine predictions in the
ensemble. Options include: mean, median, robust_mean.
Returns
-------
numpy.array of predictions
"""
df = self.predict_to_dataframe(
peptides=peptides,
alleles=alleles,
allele=allele,
throw=throw,
include_percentile_ranks=False,
include_confidence_intervals=False,
centrality_measure=centrality_measure,
)
return df.prediction.values
def predict_to_dataframe(
self,
peptides,
alleles=None,
allele=None,
throw=True,
include_individual_model_predictions=False,
include_percentile_ranks=True,
include_confidence_intervals=True,
centrality_measure=DEFAULT_CENTRALITY_MEASURE):
"""
Predict nM binding affinities. Gives more detailed output than `predict`
method, including 5-95% prediction intervals.
If multiple predictors are available for an allele, the predictions are
the geometric means of the individual model predictions.
One of 'allele' or 'alleles' must be specified. If 'allele' is specified
all predictions will be for the given allele. If 'alleles' is specified
it must be the same length as 'peptides' and give the allele
corresponding to each peptide.
Parameters
----------
peptides : `EncodableSequences` or list of string
alleles : list of string
allele : string
throw : boolean
If True, a ValueError will be raised in the case of unsupported
alleles or peptide lengths. If False, a warning will be logged and
the predictions for the unsupported alleles or peptides will be NaN.
include_individual_model_predictions : boolean
If True, the predictions of each individual model are included as
columns in the result dataframe.
include_percentile_ranks : boolean, default True
If True, a "prediction_percentile" column will be included giving the
percentile ranks. If no percentile rank information is available,
this will be ignored with a warning.
centrality_measure : string or callable
Measure of central tendency to use to combine predictions in the
ensemble. Options include: mean, median, robust_mean.
Returns
-------
`pandas.DataFrame` of predictions
"""
if isinstance(peptides, string_types):
raise TypeError("peptides must be a list or array, not a string")
if isinstance(alleles, string_types):
raise TypeError("alleles must be a list or array, not a string")
if allele is None and alleles is None:
raise ValueError("Must specify 'allele' or 'alleles'.")
peptides = EncodableSequences.create(peptides)
df = peptides.sequences_df.rename(columns={'sequence': 'peptide'})
if allele is not None:
if alleles is not None:
raise ValueError("Specify exactly one of allele or alleles")
df["allele"] = allele
df["normalized_allele"] = mhcnames.normalize_allele_name(allele)
else:
df["allele"] = numpy.array(alleles)
df["normalized_allele"] = df.allele.map(
mhcnames.normalize_allele_name)
if len(df) == 0:
# No predictions.
logging.warning("Predicting for 0 peptides.")
empty_result = pandas.DataFrame(
columns=[
'peptide',
'allele',
'prediction',
'prediction_low',
'prediction_high'
])
return empty_result
(min_peptide_length, max_peptide_length) = (
self.supported_peptide_lengths)
if (peptides.min_length < min_peptide_length or
peptides.max_length > max_peptide_length):
# Only compute this if needed
all_peptide_lengths_supported = False
df["supported_peptide_length"] = (
(df.sequence_length.len() >= min_peptide_length) &
(df.sequence_length.len() <= max_peptide_length))
if (~df.supported_peptide_length).any():
msg = (
"%d peptides have lengths outside of supported range [%d, %d]: "
"%s" % (
(~df.supported_peptide_length).sum(),
min_peptide_length,
max_peptide_length,
str(df.ix[~df.supported_peptide_length].peptide.unique())))
logging.warning(msg)
if throw:
raise ValueError(msg)
else:
# Handle common case efficiently.
df["supported_peptide_length"] = True
all_peptide_lengths_supported = True
if self.class1_pan_allele_models:
unsupported_alleles = [
allele for allele in
df.normalized_allele.unique()
if allele not in self.allele_to_fixed_length_sequence
]
if unsupported_alleles:
msg = (
"No sequences for allele(s): %s.\n"
"Supported alleles: %s" % (
" ".join(unsupported_alleles),
" ".join(sorted(self.allele_to_fixed_length_sequence))))
logging.warning(msg)
if throw:
raise ValueError(msg)
mask = df.supported_peptide_length
if mask.sum() > 0:
masked_allele_encoding = AlleleEncoding(
df.loc[mask].normalized_allele,
allele_to_fixed_length_sequence=self.allele_to_fixed_length_sequence)
masked_peptides = peptides.sequences[mask]
for (i, model) in enumerate(self.class1_pan_allele_models):
df.loc[mask, "model_pan_%d" % i] = model.predict(
masked_peptides,
allele_encoding=masked_allele_encoding)
if self.allele_to_allele_specific_models:
query_alleles = df.normalized_allele.unique()
unsupported_alleles = [
allele for allele in query_alleles
if not self.allele_to_allele_specific_models.get(allele)
]
if unsupported_alleles:
msg = (
"No single-allele models for allele(s): %s.\n"
"Supported alleles are: %s" % (
" ".join(unsupported_alleles),
" ".join(sorted(self.allele_to_allele_specific_models))))
logging.warning(msg)
if throw:
raise ValueError(msg)
for allele in query_alleles:
models = self.allele_to_allele_specific_models.get(allele, [])
if len(query_alleles) == 1 and all_peptide_lengths_supported:
mask = None
else:
mask = (
(df.normalized_allele == allele) &
df.supported_peptide_length).values
if mask is None or mask.all():
# Common case optimization
for (i, model) in enumerate(models):
df["model_single_%d" % i] = model.predict(peptides)
elif mask.sum() > 0:
allele_peptides = EncodableSequences.create(
df.ix[mask].peptide.values)
for (i, model) in enumerate(models):
df.loc[
mask, "model_single_%d" % i
] = model.predict(allele_peptides)
# Geometric mean
df_predictions = df[
[c for c in df.columns if c.startswith("model_")]
]
if callable(centrality_measure):
centrality_function = centrality_measure
else:
centrality_function = CENTRALITY_MEASURES[centrality_measure]
logs = numpy.log(df_predictions)
log_centers = centrality_function(logs.values)
df["prediction"] = numpy.exp(log_centers)
if include_confidence_intervals:
df["prediction_low"] = numpy.exp(logs.quantile(0.05, axis=1))
df["prediction_high"] = numpy.exp(logs.quantile(0.95, axis=1))
if include_individual_model_predictions:
columns = sorted(df.columns, key=lambda c: c.startswith('model_'))
else:
columns = [
c for c in df.columns if c not in df_predictions.columns
]
columns.remove("normalized_allele")
columns.remove("supported_peptide_length")
columns.remove("sequence_length")
if include_percentile_ranks:
if self.allele_to_percent_rank_transform:
df["prediction_percentile"] = self.percentile_ranks(
df.prediction,
alleles=df.normalized_allele.values,
throw=throw)
columns.append("prediction_percentile")
else:
warnings.warn("No percentile rank information available.")
return df[columns].copy()
@staticmethod
def save_weights(weights_list, filename):
"""
Save the model weights to the given filename using numpy's ".npz"
format.
Parameters
----------
weights_list : list of array
filename : string
Should end in ".npz".
"""
numpy.savez(
filename,
**dict((("array_%d" % i), w) for (i, w) in enumerate(weights_list)))
@staticmethod
def load_weights(filename):
"""
Restore model weights from the given filename, which should have been
created with `save_weights`.
Parameters
----------
filename : string
Should end in ".npz".
Returns
----------
list of array
"""
loaded = numpy.load(filename)
weights = [
loaded["array_%d" % i]
for i in range(len(loaded.keys()))
]
loaded.close()
return weights
def calibrate_percentile_ranks(
self,
peptides=None,
num_peptides_per_length=int(1e5),
alleles=None,
bins=None):
"""
Compute the cumulative distribution of ic50 values for a set of alleles
over a large universe of random peptides, to enable computing quantiles in
this distribution later.
Parameters
----------
peptides : sequence of string or EncodableSequences, optional
Peptides to use
num_peptides_per_length : int, optional
If peptides argument is not specified, then num_peptides_per_length
peptides are randomly sampled from a uniform distribution for each
supported length
alleles : sequence of string, optional
Alleles to perform calibration for. If not specified all supported
alleles will be calibrated.
bins : object
Anything that can be passed to numpy.histogram's "bins" argument
can be used here, i.e. either an integer or a sequence giving bin
edges. This is in ic50 space.
Returns
----------
EncodableSequences : peptides used for calibration
"""
if bins is None:
bins = to_ic50(numpy.linspace(1, 0, 1000))
if alleles is None:
alleles = self.supported_alleles
if peptides is None:
peptides = []
lengths = range(
self.supported_peptide_lengths[0],
self.supported_peptide_lengths[1] + 1)
for length in lengths:
peptides.extend(
random_peptides(num_peptides_per_length, length))
encoded_peptides = EncodableSequences.create(peptides)
for (i, allele) in enumerate(alleles):
predictions = self.predict(encoded_peptides, allele=allele)
transform = PercentRankTransform()
transform.fit(predictions, bins=bins)
self.allele_to_percent_rank_transform[allele] = transform
return encoded_peptides
def filter_networks(self, predicate):
"""
Return a new Class1AffinityPredictor containing a subset of this
predictor's neural networks.
Parameters
----------
predicate : Class1NeuralNetwork -> boolean
Function specifying which neural networks to include
Returns
-------
Class1AffinityPredictor
"""
allele_to_allele_specific_models = {}
for (allele, models) in self.allele_to_allele_specific_models.items():
allele_to_allele_specific_models[allele] = [
m for m in models if predicate(m)
]
class1_pan_allele_models = [
m for m in self.class1_pan_allele_models if predicate(m)
]
return Class1AffinityPredictor(
allele_to_allele_specific_models=allele_to_allele_specific_models,
class1_pan_allele_models=class1_pan_allele_models,
allele_to_fixed_length_sequence=self.allele_to_fixed_length_sequence,
)