-
Tim O'Donnell authoredTim O'Donnell authored
class1_neural_network.py 53.29 KiB
import time
import collections
import json
import weakref
import itertools
import os
import logging
import pickle
import numpy
import pandas
from .hyperparameters import HyperparameterDefaults
from .encodable_sequences import EncodableSequences, EncodingError
from .regression_target import to_ic50, from_ic50
from .common import random_peptides, amino_acid_distribution
from .custom_loss import get_loss
from .data_dependent_weights_initialization import lsuv_init
DEFAULT_PREDICT_BATCH_SIZE = 4096
if os.environ.get("MHCFLURRY_DEFAULT_PREDICT_BATCH_SIZE"):
DEFAULT_PREDICT_BATCH_SIZE = int(os.environ[
"MHCFLURRY_DEFAULT_PREDICT_BATCH_SIZE"
])
logging.info(
"Configured default predict batch size: %d" % DEFAULT_PREDICT_BATCH_SIZE)
class Class1NeuralNetwork(object):
"""
Low level class I predictor consisting of a single neural network.
Both single allele and pan-allele prediction are supported.
Users will generally use Class1AffinityPredictor, which gives a higher-level
interface and supports ensembles.
"""
network_hyperparameter_defaults = HyperparameterDefaults(
allele_amino_acid_encoding="BLOSUM62",
allele_dense_layer_sizes=[],
peptide_encoding={
'vector_encoding_name': 'BLOSUM62',
'alignment_method': 'pad_middle',
'left_edge': 4,
'right_edge': 4,
'max_length': 15,
},
peptide_dense_layer_sizes=[],
peptide_allele_merge_method="multiply",
peptide_allele_merge_activation="",
layer_sizes=[32],
dense_layer_l1_regularization=0.001,
dense_layer_l2_regularization=0.0,
activation="tanh",
init="glorot_uniform",
output_activation="sigmoid",
dropout_probability=0.0,
batch_normalization=False,
locally_connected_layers=[
{
"filters": 8,
"activation": "tanh",
"kernel_size": 3
}
],
topology="feedforward",
num_outputs=1,
)
"""
Hyperparameters (and their default values) that affect the neural network
architecture.
"""
compile_hyperparameter_defaults = HyperparameterDefaults(
loss="custom:mse_with_inequalities",
optimizer="rmsprop",
learning_rate=None,
)
"""
Loss and optimizer hyperparameters. Any values supported by keras may be
used.
"""
fit_hyperparameter_defaults = HyperparameterDefaults(
max_epochs=500,
validation_split=0.1,
early_stopping=True,
minibatch_size=128,
data_dependent_initialization_method=None,
random_negative_rate=0.0,
random_negative_constant=25,
random_negative_affinity_min=20000.0,
random_negative_affinity_max=50000.0,
random_negative_match_distribution=True,
random_negative_distribution_smoothing=0.0,
random_negative_output_indices=None)
"""
Hyperparameters for neural network training.
"""
early_stopping_hyperparameter_defaults = HyperparameterDefaults(
patience=20,
min_delta=0.0,
)
"""
Hyperparameters for early stopping.
"""
miscelaneous_hyperparameter_defaults = HyperparameterDefaults(
train_data={},
)
"""
Miscelaneous hyperaparameters. These parameters are not used by this class
but may be interpreted by other code.
"""
hyperparameter_defaults = network_hyperparameter_defaults.extend(
compile_hyperparameter_defaults).extend(
fit_hyperparameter_defaults).extend(
early_stopping_hyperparameter_defaults).extend(
miscelaneous_hyperparameter_defaults
)
"""
Combined set of all supported hyperparameters and their default values.
"""
# Hyperparameter renames.
# These are updated from time to time as new versions are developed. It
# provides a primitive way to allow new code to work with models trained
# using older code.
# None indicates the hyperparameter has been dropped.
hyperparameter_renames = {
"use_embedding": None,
"pseudosequence_use_embedding": None,
"monitor": None,
"min_delta": None,
"verbose": None,
"mode": None,
"take_best_epoch": None,
'kmer_size': None,
'peptide_amino_acid_encoding': None,
'embedding_input_dim': None,
'embedding_output_dim': None,
'embedding_init_method': None,
'left_edge': None,
'right_edge': None,
}
@classmethod
def apply_hyperparameter_renames(cls, hyperparameters):
"""
Handle hyperparameter renames.
Parameters
----------
hyperparameters : dict
Returns
-------
dict : updated hyperparameters
"""
for (from_name, to_name) in cls.hyperparameter_renames.items():
if from_name in hyperparameters:
value = hyperparameters.pop(from_name)
if to_name:
hyperparameters[to_name] = value
return hyperparameters
def __init__(self, **hyperparameters):
self.hyperparameters = self.hyperparameter_defaults.with_defaults(
self.apply_hyperparameter_renames(hyperparameters))
self._network = None
self.network_json = None
self.network_weights = None
self.network_weights_loader = None
self.fit_info = []
self.prediction_cache = weakref.WeakKeyDictionary()
KERAS_MODELS_CACHE = {}
"""
Process-wide keras model cache, a map from: architecture JSON string to
(Keras model, existing network weights)
"""
@classmethod
def clear_model_cache(klass):
"""
Clear the Keras model cache.
"""
klass.KERAS_MODELS_CACHE.clear()
@classmethod
def borrow_cached_network(klass, network_json, network_weights):
"""
Return a keras Model with the specified architecture and weights.
As an optimization, when possible this will reuse architectures from a
process-wide cache.
The returned object is "borrowed" in the sense that its weights can
change later after subsequent calls to this method from other objects.
If you're using this from a parallel implementation you'll need to
hold a lock while using the returned object.
Parameters
----------
network_json : string of JSON
network_weights : list of numpy.array
Returns
-------
keras.models.Model
"""
assert network_weights is not None
key = klass.keras_network_cache_key(network_json)
if key not in klass.KERAS_MODELS_CACHE:
# Cache miss.
import keras.models
network = keras.models.model_from_json(network_json)
existing_weights = None
else:
# Cache hit.
(network, existing_weights) = klass.KERAS_MODELS_CACHE[key]
if existing_weights is not network_weights:
network.set_weights(network_weights)
klass.KERAS_MODELS_CACHE[key] = (network, network_weights)
# As an added safety check we overwrite the fit method on the returned
# model to throw an error if it is called.
def throw(*args, **kwargs):
raise NotImplementedError("Do not call fit on cached model.")
network.fit = throw
return network
def network(self, borrow=False):
"""
Return the keras model associated with this predictor.
Parameters
----------
borrow : bool
Whether to return a cached model if possible. See
borrow_cached_network for details
Returns
-------
keras.models.Model
"""
if self._network is None and self.network_json is not None:
self.load_weights()
if borrow:
return self.borrow_cached_network(
self.network_json,
self.network_weights)
else:
import keras.models
self._network = keras.models.model_from_json(self.network_json)
if self.network_weights is not None:
self._network.set_weights(self.network_weights)
self.network_json = None
self.network_weights = None
return self._network
def update_network_description(self):
"""
Update self.network_json and self.network_weights properties based on
this instances's neural network.
"""
if self._network is not None:
self.network_json = self._network.to_json()
self.network_weights = self._network.get_weights()
@staticmethod
def keras_network_cache_key(network_json):
"""
Given a Keras JSON description of a neural network, return a key that
uniquely defines this network. Networks that share the same key should
have compatible weights matrices and give the same prediction outputs
when their weights are the same.
Parameters
----------
network_json : string
Returns
-------
string
"""
# As an optimization, we remove anything about regularization as these
# do not affect predictions.
def drop_properties(d):
if 'kernel_regularizer' in d:
del d['kernel_regularizer']
return d
description = json.loads(
network_json,
object_hook=drop_properties)
return json.dumps(description)
def get_config(self):
"""
serialize to a dict all attributes except model weights
Returns
-------
dict
"""
self.update_network_description()
result = dict(self.__dict__)
result['_network'] = None
result['network_weights'] = None
result['network_weights_loader'] = None
result['prediction_cache'] = None
return result
@classmethod
def from_config(cls, config, weights=None, weights_loader=None):
"""
deserialize from a dict returned by get_config().
Parameters
----------
config : dict
weights : list of array, optional
Network weights to restore
weights_loader : callable, optional
Function to call (no arguments) to load weights when needed
Returns
-------
Class1NeuralNetwork
"""
config = dict(config)
instance = cls(**config.pop('hyperparameters'))
instance.__dict__.update(config)
instance.network_weights = weights
instance.network_weights_loader = weights_loader
instance.prediction_cache = weakref.WeakKeyDictionary()
return instance
def load_weights(self):
"""
Load weights by evaluating self.network_weights_loader, if needed.
After calling this, self.network_weights_loader will be None and
self.network_weights will be the weights list, if available.
"""
if self.network_weights_loader:
self.network_weights = self.network_weights_loader()
self.network_weights_loader = None
def get_weights(self):
"""
Get the network weights
Returns
-------
list of numpy.array giving weights for each layer or None if there is no
network
"""
self.update_network_description()
self.load_weights()
return self.network_weights
def __getstate__(self):
"""
serialize to a dict. Model weights are included. For pickle support.
Returns
-------
dict
"""
self.update_network_description()
self.load_weights()
result = dict(self.__dict__)
result['_network'] = None
result['prediction_cache'] = None
return result
def __setstate__(self, state):
"""
Deserialize. For pickle support.
"""
self.__dict__.update(state)
self.prediction_cache = weakref.WeakKeyDictionary()
def peptides_to_network_input(self, peptides):
"""
Encode peptides to the fixed-length encoding expected by the neural
network (which depends on the architecture).
Parameters
----------
peptides : EncodableSequences or list of string
Returns
-------
numpy.array
"""
encoder = EncodableSequences.create(peptides)
encoded = encoder.variable_length_to_fixed_length_vector_encoding(
**self.hyperparameters['peptide_encoding'])
assert len(encoded) == len(peptides)
return encoded
@property
def supported_peptide_lengths(self):
"""
(minimum, maximum) lengths of peptides supported, inclusive.
Returns
-------
(int, int) tuple
"""
# We currently have an arbitrary hard floor of 5, even if the underlying
# peptide encoding supports smaller lengths.
#
# We empirically find the supported peptide lengths based on the
# lengths for which peptides_to_network_input throws ValueError.
try:
self.peptides_to_network_input([""])
except EncodingError as e:
return e.supported_peptide_lengths
raise RuntimeError("peptides_to_network_input did not raise")
def allele_encoding_to_network_input(self, allele_encoding):
"""
Encode alleles to the fixed-length encoding expected by the neural
network (which depends on the architecture).
Parameters
----------
allele_encoding : AlleleEncoding
Returns
-------
(numpy.array, numpy.array)
Indices and allele representations.
"""
return (
allele_encoding.indices,
allele_encoding.allele_representations(
self.hyperparameters['allele_amino_acid_encoding']))
@staticmethod
def data_dependent_weights_initialization(
network,
x_dict=None,
method="lsuv",
verbose=1):
"""
Data dependent weights initialization.
Parameters
----------
network : keras.Model
x_dict : dict of string -> numpy.ndarray
Training data as would be passed keras.Model.fit().
method : string
Initialization method. Currently only "lsuv" is supported.
verbose : int
Status updates printed to stdout if verbose > 0
"""
if verbose:
print("Performing data-dependent init: ", method)
if method == "lsuv":
assert x_dict is not None, "Data required for LSUV init"
lsuv_init(network, x_dict, verbose=verbose > 0)
else:
raise RuntimeError("Unsupported init method: ", method)
def fit_generator(
self,
generator,
validation_peptide_encoding,
validation_affinities,
validation_allele_encoding=None,
validation_inequalities=None,
validation_output_indices=None,
steps_per_epoch=10,
epochs=1000,
min_epochs=0,
patience=10,
min_delta=0.0,
verbose=1,
progress_callback=None,
progress_preamble="",
progress_print_interval=5.0):
"""
Fit using a generator. Does not support many of the features of fit(),
such as random negative peptides.
Fitting proceeds until early stopping is hit, using the peptides,
affinities, etc. given by the parameters starting with "validation_".
This is used for pre-training pan-allele models using data synthesized
by the allele-specific models.
Parameters
----------
generator : generator yielding (alleles, peptides, affinities) tuples
where alleles and peptides are lists of strings, and affinities
is list of floats.
validation_peptide_encoding : EncodableSequences
validation_affinities : list of float
validation_allele_encoding : AlleleEncoding
validation_inequalities : list of string
validation_output_indices : list of int
steps_per_epoch : int
epochs : int
min_epochs : int
patience : int
min_delta : float
verbose : int
progress_callback : thunk
progress_preamble : string
progress_print_interval : float
"""
from keras import backend as K
fit_info = collections.defaultdict(list)
loss = get_loss(self.hyperparameters['loss'])
(validation_allele_input, allele_representations) = (
self.allele_encoding_to_network_input(validation_allele_encoding))
if self.network() is None:
self._network = self.make_network(
allele_representations=allele_representations,
**self.network_hyperparameter_defaults.subselect(
self.hyperparameters))
if verbose > 0:
self.network().summary()
network = self.network()
network.compile(
loss=loss.loss, optimizer=self.hyperparameters['optimizer'])
network._make_predict_function()
self.set_allele_representations(allele_representations)
if self.hyperparameters['learning_rate'] is not None:
K.set_value(
self.network().optimizer.lr,
self.hyperparameters['learning_rate'])
fit_info["learning_rate"] = float(
K.get_value(self.network().optimizer.lr))
validation_x_dict = {
'peptide': self.peptides_to_network_input(
validation_peptide_encoding),
'allele': validation_allele_input,
}
encode_y_kwargs = {}
if validation_inequalities is not None:
encode_y_kwargs["inequalities"] = validation_inequalities
if validation_output_indices is not None:
encode_y_kwargs["output_indices"] = validation_output_indices
output = loss.encode_y(
from_ic50(validation_affinities), **encode_y_kwargs)
validation_y_dict = {
'output': output,
}
mutable_generator_state = {
'yielded_values': 0 # total number of data points yielded
}
def wrapped_generator():
for (alleles, peptides, affinities) in generator:
(allele_encoding_input, _) = (
self.allele_encoding_to_network_input(alleles))
x_dict = {
'peptide': self.peptides_to_network_input(peptides),
'allele': allele_encoding_input,
}
y_dict = {
'output': from_ic50(affinities)
}
yield (x_dict, y_dict)
mutable_generator_state['yielded_values'] += len(affinities)
start = time.time()
iterator = wrapped_generator()
# Initialization required if a data_dependent_initialization_method
# is set and this is our first time fitting (i.e. fit_info is empty).
data_dependent_init = self.hyperparameters[
'data_dependent_initialization_method'
]
if data_dependent_init and not self.fit_info:
first_chunk = next(iterator)
self.data_dependent_weights_initialization(
network,
first_chunk[0], # x_dict
method=data_dependent_init,
verbose=verbose)
iterator = itertools.chain([first_chunk], iterator)
min_val_loss_iteration = None
min_val_loss = None
last_progress_print = 0
epoch = 1
while True:
epoch_start_time = time.time()
fit_history = network.fit_generator(
iterator,
steps_per_epoch=steps_per_epoch,
initial_epoch=epoch - 1,
epochs=epoch,
use_multiprocessing=False,
workers=0,
validation_data=(validation_x_dict, validation_y_dict),
verbose=verbose,
)
epoch_time = time.time() - epoch_start_time
for (key, value) in fit_history.history.items():
fit_info[key].extend(value)
val_loss = fit_info['val_loss'][-1]
if min_val_loss is None or val_loss < min_val_loss - min_delta:
min_val_loss = val_loss
min_val_loss_iteration = epoch
patience_epoch_threshold = min(
epochs, max(min_val_loss_iteration + patience, min_epochs))
progress_message = (
"epoch %3d/%3d [%0.2f sec.]: loss=%g val_loss=%g. Min val "
"loss %g at epoch %s. Cum. points: %d. Stop at epoch %d." % (
epoch,
epochs,
epoch_time,
fit_info['loss'][-1],
val_loss,
min_val_loss,
min_val_loss_iteration,
mutable_generator_state['yielded_values'],
patience_epoch_threshold,
)).strip()
# Print progress no more often than once every few seconds.
if progress_print_interval is not None and (
time.time() - last_progress_print > progress_print_interval):
print(progress_preamble, progress_message)
last_progress_print = time.time()
if progress_callback:
progress_callback()
if epoch >= patience_epoch_threshold:
if progress_print_interval is not None:
print(progress_preamble, "STOPPING", progress_message)
break
epoch += 1
fit_info["time"] = time.time() - start
fit_info["num_points"] = mutable_generator_state["yielded_values"]
self.fit_info.append(dict(fit_info))
def fit(
self,
peptides,
affinities,
allele_encoding=None,
inequalities=None,
output_indices=None,
sample_weights=None,
shuffle_permutation=None,
verbose=1,
progress_callback=None,
progress_preamble="",
progress_print_interval=5.0):
"""
Fit the neural network.
Parameters
----------
peptides : EncodableSequences or list of string
affinities : list of float
nM affinities. Must be same length of as peptides.
allele_encoding : AlleleEncoding
If not specified, the model will be a single-allele predictor.
inequalities : list of string, each element one of ">", "<", or "=".
Inequalities to use for fitting. Same length as affinities.
Each element must be one of ">", "<", or "=". For example, a ">"
will train on y_pred > y_true for that element in the training set.
Requires using a custom losses that support inequalities (e.g.
mse_with_ineqalities). If None all inequalities are taken to be "=".
output_indices : list of int
For multi-output models only. Same length as affinities. Indicates
the index of the output (starting from 0) for each training example.
sample_weights : list of float
If not specified, all samples (including random negatives added
during training) will have equal weight. If specified, the random
negatives will be assigned weight=1.0.
shuffle_permutation : list of int
Permutation (integer list) of same length as peptides and affinities
If None, then a random permutation will be generated.
verbose : int
Keras verbosity level
progress_callback : function
No-argument function to call after each epoch.
progress_preamble : string
Optional string of information to include in each progress update
progress_print_interval : float
How often (in seconds) to print progress update. Set to None to
disable.
"""
from keras import backend as K
encodable_peptides = EncodableSequences.create(peptides)
peptide_encoding = self.peptides_to_network_input(encodable_peptides)
fit_info = collections.defaultdict(list)
length_counts = (
pandas.Series(encodable_peptides.sequences)
.str.len().value_counts().to_dict())
num_random_negative = {}
for length in range(8, 16):
num_random_negative[length] = int(
length_counts.get(length, 0) *
self.hyperparameters['random_negative_rate'] +
self.hyperparameters['random_negative_constant'])
num_random_negative = pandas.Series(num_random_negative)
logging.info("Random negative counts per length:\n%s" % (
str(num_random_negative.to_dict())))
aa_distribution = None
if self.hyperparameters['random_negative_match_distribution']:
aa_distribution = amino_acid_distribution(
encodable_peptides.sequences,
smoothing=self.hyperparameters[
'random_negative_distribution_smoothing'])
logging.info(
"Using amino acid distribution for random negative:\n%s" % (
str(aa_distribution.to_dict())))
y_values = from_ic50(numpy.array(affinities, copy=False))
assert numpy.isnan(y_values).sum() == 0, y_values
if inequalities is not None:
# Reverse inequalities because from_ic50() flips the direction
# (i.e. lower affinity results in higher y values).
adjusted_inequalities = pandas.Series(inequalities).map({
"=": "=",
">": "<",
"<": ">",
}).values
else:
adjusted_inequalities = numpy.tile("=", len(y_values))
if len(adjusted_inequalities) != len(y_values):
raise ValueError("Inequalities and y_values must have same length")
x_dict_without_random_negatives = {
'peptide': peptide_encoding,
}
allele_representations = None
if allele_encoding is not None:
(allele_encoding_input, allele_representations) = (
self.allele_encoding_to_network_input(allele_encoding))
x_dict_without_random_negatives['allele'] = allele_encoding_input
# Shuffle y_values and the contents of x_dict_without_random_negatives
# This ensures different data is used for the test set for early
# stopping when multiple models are trained.
if shuffle_permutation is None:
shuffle_permutation = numpy.random.permutation(len(y_values))
y_values = y_values[shuffle_permutation]
assert numpy.isnan(y_values).sum() == 0, y_values
peptide_encoding = peptide_encoding[shuffle_permutation]
adjusted_inequalities = adjusted_inequalities[shuffle_permutation]
for key in x_dict_without_random_negatives:
x_dict_without_random_negatives[key] = (
x_dict_without_random_negatives[key][shuffle_permutation])
if sample_weights is not None:
sample_weights = numpy.array(sample_weights, copy=False)[
shuffle_permutation
]
if output_indices is not None:
output_indices = numpy.array(output_indices, copy=False)[
shuffle_permutation
]
loss = get_loss(self.hyperparameters['loss'])
if not loss.supports_inequalities and (
any(inequality != "=" for inequality in adjusted_inequalities)):
raise ValueError("Loss %s does not support inequalities" % loss)
if (not loss.supports_multiple_outputs and output_indices is not None
and (output_indices != 0).any()):
raise ValueError("Loss %s does not support multiple outputs" % loss)
if self.hyperparameters['num_outputs'] != 1:
if output_indices is None:
raise ValueError(
"Must supply output_indices for multi-output predictor")
if self.network() is None:
self._network = self.make_network(
allele_representations=allele_representations,
**self.network_hyperparameter_defaults.subselect(
self.hyperparameters))
if verbose > 0:
self.network().summary()
if allele_representations is not None:
self.set_allele_representations(allele_representations)
self.network().compile(
loss=loss.loss, optimizer=self.hyperparameters['optimizer'])
if self.hyperparameters['learning_rate'] is not None:
K.set_value(
self.network().optimizer.lr,
self.hyperparameters['learning_rate'])
fit_info["learning_rate"] = float(
K.get_value(self.network().optimizer.lr))
if loss.supports_inequalities:
# Do not sample negative affinities: just use an inequality.
random_negative_ic50 = self.hyperparameters[
'random_negative_affinity_min'
]
random_negative_target = from_ic50(random_negative_ic50)
y_dict_with_random_negatives = {
"output": numpy.concatenate([
numpy.tile(
random_negative_target, int(num_random_negative.sum())),
y_values,
]),
}
# Note: we are using "<" here not ">" because the inequalities are
# now in target-space (0-1) not affinity-space.
adjusted_inequalities_with_random_negatives = (
["<"] * int(num_random_negative.sum()) +
list(adjusted_inequalities))
else:
# Randomly sample random negative affinities
y_dict_with_random_negatives = {
"output": numpy.concatenate([
from_ic50(
numpy.random.uniform(
self.hyperparameters[
'random_negative_affinity_min'],
self.hyperparameters[
'random_negative_affinity_max'],
int(num_random_negative.sum()))),
y_values,
]),
}
adjusted_inequalities_with_random_negatives = None
assert numpy.isnan(y_dict_with_random_negatives['output']).sum() == 0, (
y_dict_with_random_negatives)
if sample_weights is not None:
sample_weights_with_random_negatives = numpy.concatenate([
numpy.ones(int(num_random_negative.sum())),
sample_weights])
else:
sample_weights_with_random_negatives = None
if output_indices is not None:
random_negative_output_indices = (
self.hyperparameters['random_negative_output_indices']
if self.hyperparameters['random_negative_output_indices']
else list(range(0, self.hyperparameters['num_outputs'])))
output_indices_with_random_negatives = numpy.concatenate([
pandas.Series(random_negative_output_indices, dtype=int).sample(
n=int(num_random_negative.sum()), replace=True).values,
output_indices
])
else:
output_indices_with_random_negatives = None
encode_y_kwargs = {}
if adjusted_inequalities_with_random_negatives is not None:
encode_y_kwargs["inequalities"] = (
adjusted_inequalities_with_random_negatives)
if output_indices_with_random_negatives is not None:
encode_y_kwargs["output_indices"] = (
output_indices_with_random_negatives)
y_dict_with_random_negatives['output'] = loss.encode_y(
y_dict_with_random_negatives['output'],
**encode_y_kwargs)
min_val_loss_iteration = None
min_val_loss = None
# Initialization required if a data_dependent_initialization_method
# is set and this is our first time fitting (i.e. fit_info is empty).
needs_initialization = self.hyperparameters[
'data_dependent_initialization_method'
] is not None and not self.fit_info
start = time.time()
last_progress_print = None
x_dict_with_random_negatives = {}
for i in range(self.hyperparameters['max_epochs']):
random_negative_peptides_list = []
for (length, count) in num_random_negative.iteritems():
random_negative_peptides_list.extend(
random_peptides(
count,
length=length,
distribution=aa_distribution))
random_negative_peptides = EncodableSequences.create(
random_negative_peptides_list)
random_negative_peptides_encoding = (
self.peptides_to_network_input(random_negative_peptides))
if not x_dict_with_random_negatives:
if len(random_negative_peptides) > 0:
x_dict_with_random_negatives["peptide"] = numpy.concatenate([
random_negative_peptides_encoding,
peptide_encoding,
])
if 'allele' in x_dict_without_random_negatives:
x_dict_with_random_negatives['allele'] = numpy.concatenate([
x_dict_without_random_negatives['allele'][
numpy.random.choice(
x_dict_without_random_negatives[
'allele'].shape[0],
size=len(random_negative_peptides_list))],
x_dict_without_random_negatives['allele']
])
else:
x_dict_with_random_negatives = (
x_dict_without_random_negatives)
else:
# Update x_dict_with_random_negatives in place.
# This is more memory efficient than recreating it as above.
if len(random_negative_peptides) > 0:
x_dict_with_random_negatives["peptide"][:len(random_negative_peptides)] = (
random_negative_peptides_encoding
)
if 'allele' in x_dict_with_random_negatives:
x_dict_with_random_negatives['allele'][:len(random_negative_peptides)] = (
x_dict_with_random_negatives['allele'][
len(random_negative_peptides) + numpy.random.choice(
x_dict_with_random_negatives['allele'].shape[0] -
len(random_negative_peptides),
size=len(random_negative_peptides))
]
)
if needs_initialization:
self.data_dependent_weights_initialization(
self.network(),
x_dict_with_random_negatives,
method=self.hyperparameters[
'data_dependent_initialization_method'],
verbose=verbose)
needs_initialization = False
epoch_start = time.time()
fit_history = self.network().fit(
x_dict_with_random_negatives,
y_dict_with_random_negatives,
shuffle=True,
batch_size=self.hyperparameters['minibatch_size'],
verbose=verbose,
epochs=i + 1,
initial_epoch=i,
validation_split=self.hyperparameters['validation_split'],
sample_weight=sample_weights_with_random_negatives)
epoch_time = time.time() - epoch_start
for (key, value) in fit_history.history.items():
fit_info[key].extend(value)
# Print progress no more often than once every few seconds.
if progress_print_interval is not None and (
not last_progress_print or (
time.time() - last_progress_print
> progress_print_interval)):
print((progress_preamble + " " +
"Epoch %3d / %3d [%0.2f sec]: loss=%g. "
"Min val loss (%s) at epoch %s" % (
i,
self.hyperparameters['max_epochs'],
epoch_time,
fit_info['loss'][-1],
str(min_val_loss),
min_val_loss_iteration)).strip())
last_progress_print = time.time()
if self.hyperparameters['validation_split']:
val_loss = fit_info['val_loss'][-1]
if min_val_loss is None or (
val_loss < min_val_loss - self.hyperparameters['min_delta']):
min_val_loss = val_loss
min_val_loss_iteration = i
if self.hyperparameters['early_stopping']:
threshold = (
min_val_loss_iteration +
self.hyperparameters['patience'])
if i > threshold:
if progress_print_interval is not None:
print((progress_preamble + " " +
"Stopping at epoch %3d / %3d: loss=%g. "
"Min val loss (%g) at epoch %s" % (
i,
self.hyperparameters['max_epochs'],
fit_info['loss'][-1],
(
min_val_loss if min_val_loss is not None
else numpy.nan),
min_val_loss_iteration)).strip())
break
if progress_callback:
progress_callback()
fit_info["time"] = time.time() - start
fit_info["num_points"] = len(peptides)
self.fit_info.append(dict(fit_info))
def predict(
self,
peptides,
allele_encoding=None,
batch_size=DEFAULT_PREDICT_BATCH_SIZE,
output_index=0):
"""
Predict affinities.
If peptides are specified as EncodableSequences, then the predictions
will be cached for this predictor as long as the EncodableSequences
object remains in memory. The cache is keyed in the object identity of
the EncodableSequences, not the sequences themselves. The cache is used
only for allele-specific models (i.e. when allele_encoding is None).
Parameters
----------
peptides : EncodableSequences or list of string
allele_encoding : AlleleEncoding, optional
Only required when this model is a pan-allele model
batch_size : int
batch_size passed to Keras
output_index : int or None
For multi-output models. Gives the output index to return. If set to
None, then all outputs are returned as a samples x outputs matrix.
Returns
-------
numpy.array of nM affinity predictions
"""
assert self.prediction_cache is not None
use_cache = (
allele_encoding is None and
isinstance(peptides, EncodableSequences))
if use_cache and peptides in self.prediction_cache:
return self.prediction_cache[peptides].copy()
x_dict = {
'peptide': self.peptides_to_network_input(peptides)
}
if allele_encoding is not None:
(allele_encoding_input, allele_representations) = (
self.allele_encoding_to_network_input(allele_encoding))
x_dict['allele'] = allele_encoding_input
self.set_allele_representations(allele_representations)
network = self.network()
else:
network = self.network(borrow=True)
raw_predictions = network.predict(x_dict, batch_size=batch_size)
predictions = numpy.array(raw_predictions, dtype = "float64")
if output_index is not None:
predictions = predictions[:,output_index]
result = to_ic50(predictions)
if use_cache:
self.prediction_cache[peptides] = result
return result
@classmethod
def merge(cls, models, merge_method="average"):
"""
Merge multiple models at the tensorflow (or other backend) level.
Only certain neural network architectures support merging. Others will
result in a NotImplementedError.
Parameters
----------
models : list of Class1NeuralNetwork
instances to merge
merge_method : string, one of "average", "sum", or "concatenate"
How to merge the predictions of the different models
Returns
-------
Class1NeuralNetwork
The merged neural network
"""
import keras
import keras.backend as K
from keras.layers import Input
from keras.models import Model
if len(models) == 1:
return models[0]
assert len(models) > 1
result = Class1NeuralNetwork(**dict(models[0].hyperparameters))
# Remove hyperparameters that are not shared by all models.
for model in models:
for (key, value) in model.hyperparameters.items():
if result.hyperparameters.get(key, value) != value:
del result.hyperparameters[key]
assert result._network is None
networks = [
model.network() for model in models
]
layer_names = [
[layer.name for layer in network.layers]
for network in networks
]
pan_allele_layer_names = [
'allele', 'peptide', 'allele_representation', 'flattened_0',
'allele_flat', 'allele_peptide_merged', 'dense_0', 'dropout_0',
'dense_1', 'dropout_1', 'output',
]
if all(names == pan_allele_layer_names for names in layer_names):
# Merging an ensemble of pan-allele architectures
network = networks[0]
peptide_input = Input(
shape=tuple(int(x) for x in K.int_shape(network.inputs[0])[1:]),
dtype='float32',
name='peptide')
allele_input = Input(
shape=(1,),
dtype='float32',
name='allele')
allele_embedding = network.get_layer(
"allele_representation")(allele_input)
peptide_flat = network.get_layer("flattened_0")(peptide_input)
allele_flat = network.get_layer("allele_flat")(allele_embedding)
allele_peptide_merged = network.get_layer("allele_peptide_merged")(
[peptide_flat, allele_flat])
sub_networks = []
for (i, network) in enumerate(networks):
layers = network.layers[
pan_allele_layer_names.index("allele_peptide_merged") + 1:
]
node = allele_peptide_merged
for layer in layers:
layer.name += "_%d" % i
node = layer(node)
sub_networks.append(node)
if merge_method == 'average':
output = keras.layers.average(sub_networks)
elif merge_method == 'sum':
output = keras.layers.add(sub_networks)
elif merge_method == 'concatenate':
output = keras.layers.concatenate(sub_networks)
else:
raise NotImplementedError(
"Unsupported merge method", merge_method)
result._network = Model(
inputs=[peptide_input, allele_input],
outputs=[output],
name="merged_predictor"
)
result.update_network_description()
else:
raise NotImplementedError(
"Don't know merge_method to merge networks with layer names: ",
layer_names)
return result
def make_network(
self,
peptide_encoding,
allele_amino_acid_encoding,
allele_dense_layer_sizes,
peptide_dense_layer_sizes,
peptide_allele_merge_method,
peptide_allele_merge_activation,
layer_sizes,
dense_layer_l1_regularization,
dense_layer_l2_regularization,
activation,
init,
output_activation,
dropout_probability,
batch_normalization,
locally_connected_layers,
topology,
num_outputs=1,
allele_representations=None):
"""
Helper function to make a keras network for class 1 affinity prediction.
"""
# We import keras here to avoid tensorflow debug output, etc. unless we
# are actually about to use Keras.
from keras.layers import Input
import keras.layers
from keras.layers.core import Dense, Flatten, Dropout
from keras.layers.embeddings import Embedding
from keras.layers.normalization import BatchNormalization
peptide_encoding_shape = self.peptides_to_network_input([]).shape[1:]
peptide_input = Input(
shape=peptide_encoding_shape,
dtype='float32',
name='peptide')
current_layer = peptide_input
inputs = [peptide_input]
kernel_regularizer = None
l1 = dense_layer_l1_regularization
l2 = dense_layer_l2_regularization
if l1 > 0 or l2 > 0:
kernel_regularizer = keras.regularizers.l1_l2(l1, l2)
for (i, locally_connected_params) in enumerate(locally_connected_layers):
current_layer = keras.layers.LocallyConnected1D(
name="lc_%d" % i,
**locally_connected_params)(current_layer)
current_layer = Flatten(name="flattened_0")(current_layer)
for (i, layer_size) in enumerate(peptide_dense_layer_sizes):
current_layer = Dense(
layer_size,
name="peptide_dense_%d" % i,
kernel_regularizer=kernel_regularizer,
activation=activation)(current_layer)
if batch_normalization:
current_layer = BatchNormalization(name="batch_norm_early")(
current_layer)
if allele_representations is not None:
allele_input = Input(
shape=(1,),
dtype='float32',
name='allele')
inputs.append(allele_input)
allele_layer = Embedding(
name="allele_representation",
input_dim=allele_representations.shape[0],
output_dim=numpy.product(allele_representations.shape[1:], dtype=int),
input_length=1,
trainable=False)(allele_input)
for (i, layer_size) in enumerate(allele_dense_layer_sizes):
allele_layer = Dense(
layer_size,
name="allele_dense_%d" % i,
kernel_regularizer=kernel_regularizer,
activation=activation)(allele_layer)
allele_layer = Flatten(name="allele_flat")(allele_layer)
if peptide_allele_merge_method == 'concatenate':
current_layer = keras.layers.concatenate([
current_layer, allele_layer
], name="allele_peptide_merged")
elif peptide_allele_merge_method == 'multiply':
current_layer = keras.layers.multiply([
current_layer, allele_layer
], name="allele_peptide_merged")
else:
raise ValueError(
"Unsupported peptide_allele_encoding_merge_method: %s"
% peptide_allele_merge_method)
if peptide_allele_merge_activation:
current_layer = keras.layers.Activation(
peptide_allele_merge_activation,
name="alelle_peptide_merged_%s" %
peptide_allele_merge_activation)(current_layer)
densenet_layers = [] if topology == "densenet" else None
for (i, layer_size) in enumerate(layer_size):
if densenet_layers is not None:
densenet_layers.append(current_layer)
if len(densenet_layers) > 1:
current_layer = keras.layers.concatenate(densenet_layers)
else:
(current_layer,) = densenet_layers
current_layer = Dense(
layer_size,
activation=activation,
kernel_regularizer=kernel_regularizer,
name="dense_%d" % i)(current_layer)
if batch_normalization:
current_layer = BatchNormalization(
name="batch_norm_%d" % i)(current_layer)
if dropout_probability > 0:
current_layer = Dropout(
rate=1 - dropout_probability,
name="dropout_%d" % i)(current_layer)
# Note that when using densenet topology, we intentionally do not have
# any skip connections to the final output node. This empirically seems
# to work better.
output = Dense(
num_outputs,
kernel_initializer=init,
activation=output_activation,
name="output")(current_layer)
model = keras.models.Model(
inputs=inputs,
outputs=[output],
name="predictor")
return model
def clear_allele_representations(self):
"""
Set allele representations to an empty array. Useful before saving to
save a smaller version of the model.
"""
original_model = self.network()
layer = original_model.get_layer("allele_representation")
existing_weights_shape = (layer.input_dim, layer.output_dim)
self.set_allele_representations(
numpy.zeros(shape=(0,) + existing_weights_shape.shape[1:]))
def set_allele_representations(self, allele_representations, force_surgery=False):
"""
Set the allele representations in use by this model. This means mutating
the weights for the allele input embedding layer.
Rationale: instead of passing in the allele sequence for each data point
during model training or prediction (which is expensive in terms of
memory usage), we pass in an allele index between 0 and n-1 where n is
the number of alleles in some universe of possible alleles. This index
is used in the model to lookup the corresponding allele sequence. This
function sets the lookup table.
See also: AlleleEncoding.allele_representations()
Parameters
----------
allele_representations : numpy.ndarray of shape (a, l, m)
where a is the total number of alleles,
l is the allele sequence length,
m is the length of the vectors used to represent amino acids
"""
from keras.models import clone_model
import keras.backend as K
import tensorflow as tf
reshaped = allele_representations.reshape(
(allele_representations.shape[0], -1))
original_model = self.network()
layer = original_model.get_layer("allele_representation")
existing_weights_shape = (layer.input_dim, layer.output_dim)
# Only changes to the number of supported alleles (not the length of
# the allele sequences) are allowed.
assert existing_weights_shape[1:] == reshaped.shape[1:]
if existing_weights_shape[0] > reshaped.shape[0] and not force_surgery:
# Extend with NaNs so we can avoid having to reshape the weights
# matrix, which is expensive.
reshaped = numpy.append(
reshaped,
numpy.ones([
existing_weights_shape[0] - reshaped.shape[0],
reshaped.shape[1]
]) * numpy.nan,
axis=0)
if existing_weights_shape != reshaped.shape:
# Network surgery required. Make a new network with this layer's
# dimensions changed. Kind of a hack.
layer.input_dim = reshaped.shape[0]
new_model = clone_model(original_model)
# copy weights for other layers over
for layer in new_model.layers:
if layer.name != "allele_representation":
layer.set_weights(
original_model.get_layer(name=layer.name).get_weights())
self._network = new_model
self.update_network_description()
layer = new_model.get_layer("allele_representation")
# Disable the old model to catch bugs.
def throw(*args, **kwargs):
raise RuntimeError("Using a disabled model!")
original_model.predict = \
original_model.fit = \
original_model.fit_generator = throw
layer.set_weights([reshaped])