-
Tim O'Donnell authoredTim O'Donnell authored
generate.py 6.21 KiB
"""
Generate certain RST files used in documentation.
"""
import sys
import argparse
import json
from textwrap import wrap
from collections import OrderedDict
import pypandoc
import pandas
from keras.utils.vis_utils import plot_model
from tabulate import tabulate
from mhcflurry import __version__
from mhcflurry.downloads import get_path
from mhcflurry.class1_affinity_predictor import Class1AffinityPredictor
parser = argparse.ArgumentParser(usage=__doc__)
parser.add_argument(
"--cv-summary-csv",
metavar="FILE.csv",
default=get_path(
"cross_validation_class1", "summary.all.csv", test_exists=False),
help="Cross validation scores summary. Default: %(default)s",
)
parser.add_argument(
"--class1-models-dir",
metavar="DIR",
default=get_path(
"models_class1", "models", test_exists=False),
help="Class1 models. Default: %(default)s",
)
parser.add_argument(
"--out-models-cv-rst",
metavar="FILE.rst",
help="rst output file",
)
parser.add_argument(
"--out-models-info-rst",
metavar="FILE.rst",
help="rst output file",
)
parser.add_argument(
"--out-models-architecture-png",
metavar="FILE.png",
help="png output file",
)
parser.add_argument(
"--out-models-supported-alleles-rst",
metavar="FILE.png",
help="png output file",
)
def go(argv):
args = parser.parse_args(argv)
predictor = None
if args.out_models_supported_alleles_rst:
# Supported alleles rst
if predictor is None:
predictor = Class1AffinityPredictor.load(args.class1_models_dir)
with open(args.out_models_supported_alleles_rst, "w") as fd:
fd.write(
"Models released with the current version of MHCflurry (%s) "
"support peptides of "
"length %d-%d and the following %d alleles:\n\n::\n\n\t%s\n\n" % (
__version__,
predictor.supported_peptide_lengths[0],
predictor.supported_peptide_lengths[1],
len(predictor.supported_alleles),
"\n\t".join(
wrap(", ".join(predictor.supported_alleles)))))
print("Wrote: %s" % args.out_models_supported_alleles_rst)
if args.out_models_architecture_png:
# Architecture diagram
if predictor is None:
predictor = Class1AffinityPredictor.load(args.class1_models_dir)
network = predictor.neural_networks[0].network()
plot_model(
network,
to_file=args.out_models_architecture_png,
show_layer_names=True,
show_shapes=True)
print("Wrote: %s" % args.out_models_architecture_png)
if args.out_models_info_rst:
# Architecture information rst
if predictor is None:
predictor = Class1AffinityPredictor.load(args.class1_models_dir)
representative_networks = OrderedDict()
for network in predictor.neural_networks:
config = json.dumps(network.hyperparameters)
if config not in representative_networks:
representative_networks[config] = network
all_hyperparameters = [
network.hyperparameters for network in representative_networks.values()
]
hyperparameter_keys = all_hyperparameters[0].keys()
assert all(
hyperparameters.keys() == hyperparameter_keys
for hyperparameters in all_hyperparameters)
constant_hyperparameter_keys = [
k for k in hyperparameter_keys
if all([
hyperparameters[k] == all_hyperparameters[0][k]
for hyperparameters in all_hyperparameters
])
]
constant_hypeparameters = dict(
(key, all_hyperparameters[0][key])
for key in sorted(constant_hyperparameter_keys)
)
def write_hyperparameters(fd, hyperparameters):
rows = []
for key in sorted(hyperparameters.keys()):
rows.append((key, json.dumps(hyperparameters[key])))
fd.write("\n")
fd.write(
tabulate(rows, ["Hyperparameter", "Value"], tablefmt="grid"))
with open(args.out_models_info_rst, "w") as fd:
fd.write("Hyperparameters shared by all %d architectures:\n" %
len(representative_networks))
write_hyperparameters(fd, constant_hypeparameters)
fd.write("\n")
for (i, network) in enumerate(representative_networks.values()):
lines = []
network.network().summary(print_fn=lines.append)
fd.write("Architecture %d / %d:\n" % (
(i + 1, len(representative_networks))))
fd.write("+" * 40)
fd.write("\n")
write_hyperparameters(
fd,
dict(
(key, value)
for (key, value) in network.hyperparameters.items()
if key not in constant_hypeparameters))
fd.write("\n\n::\n\n")
for line in lines:
fd.write(" ")
fd.write(line)
fd.write("\n")
print("Wrote: %s" % args.out_models_info_rst)
if args.out_models_cv_rst:
# Models cv output
df = pandas.read_csv(args.cv_summary_csv)
sub_df = df.loc[
df.kind == "ensemble"
].sort_values("allele").copy().reset_index(drop=True)
sub_df["Allele"] = sub_df.allele
sub_df["CV Training Size"] = sub_df.train_size.astype(int)
sub_df["AUC"] = sub_df.auc
sub_df["F1"] = sub_df.f1
sub_df["Kendall Tau"] = sub_df.tau
sub_df = sub_df[sub_df.columns[-5:]]
html = sub_df.to_html(
index=False,
float_format=lambda v: "%0.3f" % v,
justify="left")
rst = pypandoc.convert_text(html, format="html", to="rst")
with open(args.out_models_cv_rst, "w") as fd:
fd.write(
"Showing estimated performance for %d alleles." % len(sub_df))
fd.write("\n\n")
fd.write(rst)
print("Wrote: %s" % args.out_models_cv_rst)
if __name__ == "__main__":
go(sys.argv[1:])