Newer
Older
"""
Train Class1 pan-allele models.
"""
import argparse
import os
import signal
import sys
import time
import traceback
import random
from functools import partial
import numpy
import pandas
import yaml
from mhcnames import normalize_allele_name
import tqdm # progress bar
tqdm.monitor_interval = 0 # see https://github.com/tqdm/tqdm/issues/481
from .class1_affinity_predictor import Class1AffinityPredictor
from .class1_neural_network import Class1NeuralNetwork
from .local_parallelism import (
add_local_parallelism_args,
worker_pool_with_gpu_assignments_from_args,
call_wrapped_kwargs)
from .cluster_parallelism import (
add_cluster_parallelism_args,
cluster_results_from_args)
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
from .allele_encoding import AlleleEncoding
from .encodable_sequences import EncodableSequences
# To avoid pickling large matrices to send to child processes when running in
# parallel, we use this global variable as a place to store data. Data that is
# stored here before creating the thread pool will be inherited to the child
# processes upon fork() call, allowing us to share large data with the workers
# via shared memory.
GLOBAL_DATA = {}
# Note on parallelization:
# It seems essential currently (tensorflow==1.4.1) that no processes are forked
# after tensorflow has been used at all, which includes merely importing
# keras.backend. So we must make sure not to use tensorflow in the main process
# if we are running in parallel.
parser = argparse.ArgumentParser(usage=__doc__)
parser.add_argument(
"--data",
metavar="FILE.csv",
required=True,
help=(
"Training data CSV. Expected columns: "
"allele, peptide, measurement_value"))
parser.add_argument(
"--pretrain-data",
metavar="FILE.csv",
help=(
"Pre-training data CSV. Expected columns: "
"allele, peptide, measurement_value"))
parser.add_argument(
"--out-models-dir",
metavar="DIR",
required=True,
help="Directory to write models and manifest")
parser.add_argument(
"--hyperparameters",
metavar="FILE.json",
required=True,
help="JSON or YAML of hyperparameters")
parser.add_argument(
"--held-out-measurements-per-allele-fraction-and-max",
type=float,
metavar="X",
nargs=2,
default=[0.25, 100],
help="Fraction of measurements per allele to hold out, and maximum number")
parser.add_argument(
"--ignore-inequalities",
action="store_true",
default=False,
help="Do not use affinity value inequalities even when present in data")
parser.add_argument(
"--ensemble-size",
type=int,
metavar="N",
required=True,
help="Ensemble size, i.e. how many models to retain the final predictor. "
"In the current implementation, this is also the number of training folds.")
parser.add_argument(
"--num-replicates",
type=int,
metavar="N",
default=1,
help="Number of replicates per (architecture, fold) pair to train.")
parser.add_argument(
"--max-epochs",
type=int,
metavar="N",
help="Max training epochs. If specified here it overrides any 'max_epochs' "
"specified in the hyperparameters.")
parser.add_argument(
"--allele-sequences",
metavar="FILE.csv",
help="Allele sequences file.")
parser.add_argument(
"--save-interval",
type=float,
metavar="N",
default=60,
help="Write models to disk every N seconds. Only affects parallel runs; "
"serial runs write each model to disk as it is trained.")
parser.add_argument(
"--verbosity",
type=int,
help="Keras verbosity. Default: %(default)s",
default=0)
parser.add_argument(
"--debug",
action="store_true",
default=False,
help="Launch python debugger on error")
add_local_parallelism_args(parser)
add_cluster_parallelism_args(parser)
def assign_folds(df, num_folds, held_out_fraction, held_out_max):
result_df = pandas.DataFrame(index=df.index)
for fold in range(num_folds):
result_df["fold_%d" % fold] = True
for (allele, sub_df) in df.groupby("allele"):
medians = sub_df.groupby("peptide").measurement_value.median()
low_peptides = medians[medians < medians.median()].index.values
high_peptides = medians[medians >= medians.median()].index.values
held_out_count = int(
min(len(medians) * held_out_fraction, held_out_max))
held_out_peptides = set()
if held_out_count == 0:
pass
elif held_out_count < 2:
held_out_peptides = set(
medians.index.to_series().sample(n=held_out_count))
else:
held_out_low_count = min(
len(low_peptides),
int(held_out_count / 2))
held_out_high_count = min(
len(high_peptides),
held_out_count - held_out_low_count)
held_out_low = pandas.Series(low_peptides).sample(
n=held_out_low_count) if held_out_low_count else set()
held_out_high = pandas.Series(high_peptides).sample(
n=held_out_high_count) if held_out_high_count else set()
held_out_peptides = set(held_out_low).union(set(held_out_high))
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
result_df.loc[
sub_df.index[sub_df.peptide.isin(held_out_peptides)],
"fold_%d" % fold
] = False
print("Training points per fold")
print(result_df.sum())
print("Test points per fold")
print((~result_df).sum())
return result_df
def pretrain_data_iterator(
filename,
master_allele_encoding,
peptides_per_chunk=1024):
empty = pandas.read_csv(filename, index_col=0, nrows=0)
usable_alleles = [
c for c in empty.columns
if c in master_allele_encoding.allele_to_sequence
]
print("Using %d / %d alleles" % (len(usable_alleles), len(empty.columns)))
print("Skipped alleles: ", [
c for c in empty.columns
if c not in master_allele_encoding.allele_to_sequence
])
allele_encoding = AlleleEncoding(
numpy.tile(usable_alleles, peptides_per_chunk),
borrow_from=master_allele_encoding)
while True:
synthetic_iter = pandas.read_csv(
filename, index_col=0, chunksize=peptides_per_chunk)
for (k, df) in enumerate(synthetic_iter):
if len(df) != peptides_per_chunk:
continue
df = df[usable_alleles]
encodable_peptides = EncodableSequences(
numpy.repeat(
df.index.values,
len(usable_alleles)))
# On sigusr1 print stack trace
print("To show stack trace, run:\nkill -s USR1 %d" % os.getpid())
signal.signal(signal.SIGUSR1, lambda sig, frame: traceback.print_stack())
args = parser.parse_args(argv)
if args.debug:
try:
return main(args)
except Exception as e:
print(e)
import ipdb ; ipdb.set_trace()
raise
else:
return main(args)
def main(args):
global GLOBAL_DATA
args.out_models_dir = os.path.abspath(args.out_models_dir)
configure_logging(verbose=args.verbosity > 1)
hyperparameters_lst = yaml.load(open(args.hyperparameters))
assert isinstance(hyperparameters_lst, list)
print("Loaded hyperparameters list:")
pprint.pprint(hyperparameters_lst)
allele_sequences = pandas.read_csv(
args.allele_sequences, index_col=0).sequence
df = pandas.read_csv(args.data)
print("Loaded training data: %s" % (str(df.shape)))
df = df.loc[
(df.peptide.str.len() >= 8) & (df.peptide.str.len() <= 15)
]
print("Subselected to 8-15mers: %s" % (str(df.shape)))
df = df.loc[~df.measurement_value.isnull()]
print("Dropped NaNs: %s" % (str(df.shape)))
df = df.loc[df.allele.isin(allele_sequences.index)]
print("Subselected to alleles with sequences: %s" % (str(df.shape)))
print("Data inequalities:")
print(df.measurement_inequality.value_counts())
if args.ignore_inequalities and "measurement_inequality" in df.columns:
print("Dropping measurement_inequality column")
del df["measurement_inequality"]
# Allele names in data are assumed to be already normalized.
print("Training data: %s" % (str(df.shape)))
(held_out_fraction, held_out_max) = (
args.held_out_measurements_per_allele_fraction_and_max)
folds_df = assign_folds(
df=df,
num_folds=args.ensemble_size,
held_out_fraction=held_out_fraction,
held_out_max=held_out_max)
allele_sequences_in_use = allele_sequences[
allele_sequences.index.isin(df.allele)
]
print("Will use %d / %d allele sequences" % (
allele_encoding = AlleleEncoding(
alleles=allele_sequences_in_use.index.values,
allele_to_sequence=allele_sequences_in_use.to_dict())
GLOBAL_DATA["train_data"] = df
GLOBAL_DATA["folds_df"] = folds_df
GLOBAL_DATA["allele_encoding"] = allele_encoding
if not os.path.exists(args.out_models_dir):
print("Attempting to create directory: %s" % args.out_models_dir)
os.mkdir(args.out_models_dir)
print("Done.")
predictor = Class1AffinityPredictor(
allele_to_sequence=allele_encoding.allele_to_sequence,
'train_data': pandas.merge(
df,
folds_df,
left_index=True,
right_index=True)
work_items = []
for (h, hyperparameters) in enumerate(hyperparameters_lst):
if 'n_models' in hyperparameters:
raise ValueError("n_models is unsupported")
if args.max_epochs:
hyperparameters['max_epochs'] = args.max_epochs
if hyperparameters.get("train_data", {}).get("pretrain", False):
if not args.pretrain_data:
raise ValueError("--pretrain-data is required")
for fold in range(args.ensemble_size):
for replicate in range(args.num_replicates):
work_dict = {
'architecture_num': h,
'num_architectures': len(hyperparameters_lst),
'fold_num': fold,
'num_folds': args.ensemble_size,
'replicate_num': replicate,
'num_replicates': args.num_replicates,
'hyperparameters': hyperparameters,
'pretrain_data_filename': args.pretrain_data,
'verbose': args.verbosity,
'predictor': predictor if serial_run else None,
'save_to': args.out_models_dir if serial_run else None,
}
work_items.append(work_dict)
start = time.time()
# The estimated time to completion is more accurate if we randomize
# the order of the work.
random.shuffle(work_items)
for (work_item_num, item) in enumerate(work_items):
item['work_item_num'] = work_item_num
item['num_work_items'] = len(work_items)
if args.cluster_parallelism:
# Run using separate processes HPC cluster.
results_generator = cluster_results_from_args(
args,
work_function=train_model,
work_items=work_items,
constant_data=GLOBAL_DATA,
result_serialization_method="save_predictor")
worker_pool = None
else:
worker_pool = worker_pool_with_gpu_assignments_from_args(args)
print("Worker pool", worker_pool)
if worker_pool:
print("Processing %d work items in parallel." % len(work_items))
assert not serial_run
results_generator = worker_pool.imap_unordered(
partial(call_wrapped_kwargs, train_model),
work_items,
chunksize=1)
else:
# Run in serial. In this case, every worker is passed the same predictor,
# which it adds models to, so no merging is required. It also saves
# as it goes so no saving is required at the end.
print("Processing %d work items in serial." % len(work_items))
assert serial_run
for _ in tqdm.trange(len(work_items)):
item = work_items.pop(0) # want to keep freeing up memory
work_predictor = train_model(**item)
assert work_predictor is predictor
assert not work_items
results_generator = None
if results_generator:
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
unsaved_predictors = []
last_save_time = time.time()
for new_predictor in tqdm.tqdm(results_generator, total=len(work_items)):
unsaved_predictors.append(new_predictor)
if time.time() > last_save_time + args.save_interval:
# Save current predictor.
save_start = time.time()
new_model_names = predictor.merge_in_place(unsaved_predictors)
predictor.save(
args.out_models_dir,
model_names_to_write=new_model_names,
write_metadata=False)
print(
"Saved predictor (%d models total) including %d new models "
"in %0.2f sec to %s" % (
len(predictor.neural_networks),
len(new_model_names),
time.time() - save_start,
args.out_models_dir))
unsaved_predictors = []
last_save_time = time.time()
predictor.merge_in_place(unsaved_predictors)
print("Saving final predictor to: %s" % args.out_models_dir)
predictor.save(args.out_models_dir) # write all models just to be sure
print("Done.")
print("*" * 30)
training_time = time.time() - start
print("Trained affinity predictor with %d networks in %0.2f min." % (
len(predictor.neural_networks), training_time / 60.0))
print("*" * 30)
if worker_pool:
worker_pool.close()
worker_pool.join()
print("Predictor written to: %s" % args.out_models_dir)
def train_model(
architecture_num,
num_architectures,
fold_num,
num_folds,
replicate_num,
num_replicates,
hyperparameters,
pretrain_data_filename,
df = constant_data["train_data"]
folds_df = constant_data["folds_df"]
allele_encoding = constant_data["allele_encoding"]
if predictor is None:
predictor = Class1AffinityPredictor(
allele_to_sequence=allele_encoding.allele_to_sequence)
numpy.testing.assert_equal(len(df), len(folds_df))
train_data = df.loc[
folds_df["fold_%d" % fold_num]
].sample(frac=1.0)
train_peptides = EncodableSequences(train_data.peptide.values)
train_alleles = AlleleEncoding(
train_data.allele.values, borrow_from=allele_encoding)
progress_preamble = (
"[%2d / %2d folds] "
"[%2d / %2d architectures] "
"[%4d / %4d replicates] " % (
fold_num + 1,
num_folds,
architecture_num + 1,
num_architectures,
replicate_num + 1,
num_replicates))
print("%s [pid %d]. Hyperparameters:" % (progress_preamble, os.getpid()))
pprint.pprint(hyperparameters)
train_params = dict(hyperparameters.get("train_data", {}))
def get_train_param(param, default):
if param in train_params:
result = train_params.pop(param)
if verbose:
print("Train param", param, "=", result)
else:
result = default
if verbose:
print("Train param", param, "=", result, "[default]")
return result
if get_train_param("pretrain", False):
pretrain_patience = get_train_param("pretrain_patience", 10)
pretrain_min_delta = get_train_param("pretrain_min_delta", 0.0)
pretrain_steps_per_epoch = get_train_param(
pretrain_max_epochs = get_train_param("pretrain_max_epochs", 1000)
pretrain_min_epochs = get_train_param("pretrain_min_epochs", 0)
pretrain_peptides_per_step = get_train_param(
"pretrain_peptides_per_step", 1024)
max_val_loss = get_train_param("pretrain_max_val_loss", None)
attempt = 0
while True:
attempt += 1
print("Pre-training attempt %d" % attempt)
if attempt > 10:
print("Too many pre-training attempts! Stopping pretraining.")
break
model = Class1NeuralNetwork(**hyperparameters)
assert model.network() is None
generator = pretrain_data_iterator(
pretrain_data_filename,
allele_encoding,
peptides_per_chunk=pretrain_peptides_per_step)
model.fit_generator(
generator,
validation_peptide_encoding=train_peptides,
validation_affinities=train_data.measurement_value.values,
validation_allele_encoding=train_alleles,
validation_inequalities=train_data.measurement_inequality.values,
patience=pretrain_patience,
min_delta=pretrain_min_delta,
steps_per_epoch=pretrain_steps_per_epoch,
epochs=pretrain_max_epochs,
progress_preamble=progress_preamble + "PRETRAIN",
progress_print_interval=progress_print_interval,
model.fit_info[-1].setdefault(
"training_info", {})["pretrain_attempt"] = attempt
final_val_loss = model.fit_info[-1]["val_loss"][-1]
if final_val_loss >= max_val_loss:
else:
print("Val loss %f < max val loss %f. Done pre-training." % (
# Use a smaller learning rate for training on real data
learning_rate = model.fit_info[-1]["learning_rate"]
model.hyperparameters['learning_rate'] = learning_rate / 10
peptides=train_peptides,
affinities=train_data.measurement_value.values,
inequalities=(
train_data.measurement_inequality.values
if "measurement_inequality" in train_data.columns else None),
progress_preamble=progress_preamble,
progress_print_interval=progress_print_interval,
verbose=verbose)
# Save model-specific training info
train_peptide_hash = hashlib.sha1()
for peptide in sorted(train_data.peptide.values):
"fold_num": fold_num,
"num_folds": num_folds,
"replicate_num": replicate_num,
"num_replicates": num_replicates,
"architecture_num": architecture_num,
"num_architectures": num_architectures,
"train_peptide_hash": train_peptide_hash.hexdigest(),
numpy.testing.assert_equal(
predictor.manifest_df.shape[0], len(predictor.class1_pan_allele_models))
numpy.testing.assert_equal(
predictor.manifest_df.shape[0], len(predictor.class1_pan_allele_models))
predictor.clear_cache()
model.update_network_description() # save weights and config
model._network = None # release tensorflow network
if __name__ == '__main__':