Newer
Older
Tim O'Donnell
committed
from numpy.testing import assert_equal
from mhcflurry import Class1AffinityPredictor, Class1NeuralNetwork
DOWNLOADED_PREDICTOR = None
def setup():
global DOWNLOADED_PREDICTOR
DOWNLOADED_PREDICTOR = Class1AffinityPredictor.load()
def teardown():
global DOWNLOADED_PREDICTOR
DOWNLOADED_PREDICTOR = None
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
def predict_and_check(
allele,
peptide,
predictor=DOWNLOADED_PREDICTOR,
expected_range=(0, 500)):
def debug():
print("\n%s" % (
predictor.predict_to_dataframe(
peptides=[peptide],
allele=allele,
include_individual_model_predictions=True)))
(prediction,) = predictor.predict(allele=allele, peptides=[peptide])
assert prediction >= expected_range[0], (predictor, prediction, debug())
assert prediction <= expected_range[1], (predictor, prediction, debug())
def test_a1_titin_epitope_downloaded_models():
# Test the A1 Titin epitope ESDPIVAQY from
# Identification of a Titin-Derived HLA-A1-Presented Peptide
# as a Cross-Reactive Target for Engineered MAGE A3-Directed
# T Cells
predict_and_check("HLA-A*01:01", "ESDPIVAQY")
def test_a1_mage_epitope_downloaded_models():
# Test the A1 MAGE epitope EVDPIGHLY from
# Identification of a Titin-Derived HLA-A1-Presented Peptide
# as a Cross-Reactive Target for Engineered MAGE A3-Directed
# T Cells
predict_and_check("HLA-A*01:01", "EVDPIGHLY")
def test_a2_hiv_epitope_downloaded_models():
# Test the A2 HIV epitope SLYNTVATL from
# The HIV-1 HLA-A2-SLYNTVATL Is a Help-Independent CTL Epitope
predict_and_check("HLA-A*02:01", "SLYNTVATL")
Tim O'Donnell
committed
def test_caching():
Class1NeuralNetwork.KERAS_MODELS_CACHE.clear()
DOWNLOADED_PREDICTOR.predict(
peptides=["SIINFEKL"],
allele="HLA-A*02:01")
num_cached = len(Class1NeuralNetwork.KERAS_MODELS_CACHE)