Newer
Older
import numpy
numpy.random.seed(0)
import time
import cProfile
import pstats
import pandas
from mhcflurry import Class1AffinityPredictor
from mhcflurry.common import random_peptides
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
DOWNLOADED_PREDICTOR = Class1AffinityPredictor.load()
def test_speed(profile=False):
starts = {}
timings = {}
profilers = {}
def start(name):
starts[name] = time.time()
if profile:
profilers[name] = cProfile.Profile()
profilers[name].enable()
def end(name):
timings[name] = time.time() - starts[name]
if profile:
profilers[name].disable()
start("first")
DOWNLOADED_PREDICTOR.predict(["SIINFEKL"], allele="HLA-A*02:01")
end("first")
peptides = random_peptides(NUM)
start("pred_%d" % NUM)
DOWNLOADED_PREDICTOR.predict(peptides, allele="HLA-A*02:01")
end("pred_%d" % NUM)
print("SPEED BENCHMARK")
print("Results:\n%s" % str(pandas.Series(timings)))
return dict(
(key, pstats.Stats(value)) for (key, value) in profilers.items())
if __name__ == '__main__':
# If run directly from python, do profiling and leave the user in a shell
# to explore results.
result = test_speed(profile=True)
result["pred_%d" % NUM].sort_stats("cumtime").reverse_order().print_stats()
# Leave in ipython
locals().update(result)
import ipdb ; ipdb.set_trace()