Newer
Older
from __future__ import print_function
import time
import collections
from six import string_types
import numpy
import pandas
import mhcnames
import hashlib
from .hyperparameters import HyperparameterDefaults
from .class1_neural_network import Class1NeuralNetwork, DEFAULT_PREDICT_BATCH_SIZE
from .encodable_sequences import EncodableSequences
from .regression_target import from_ic50, to_ic50
from .random_negative_peptides import RandomNegativePeptides
from .allele_encoding import MultipleAlleleEncoding, AlleleEncoding
from .auxiliary_input import AuxiliaryInputEncoder
from .batch_generator import MultiallelicMassSpecBatchGenerator
from .custom_loss import (
MSEWithInequalities,
MultiallelicMassSpecLoss,
ZeroLoss)
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
network_hyperparameter_defaults = HyperparameterDefaults(
allele_amino_acid_encoding="BLOSUM62",
peptide_encoding={
'vector_encoding_name': 'BLOSUM62',
'alignment_method': 'left_pad_centered_right_pad',
'max_length': 15,
},
max_alleles=6,
)
"""
Hyperparameters (and their default values) that affect the neural network
architecture.
"""
fit_hyperparameter_defaults = HyperparameterDefaults(
max_epochs=500,
early_stopping=True,
random_negative_affinity_min=20000.0,).extend(
RandomNegativePeptides.hyperparameter_defaults).extend(
MultiallelicMassSpecBatchGenerator.hyperparameter_defaults
)
"""
Hyperparameters for neural network training.
"""
early_stopping_hyperparameter_defaults = HyperparameterDefaults(
patience=20,
min_delta=0.0,
)
"""
Hyperparameters for early stopping.
"""
compile_hyperparameter_defaults = HyperparameterDefaults(
loss_multiallelic_mass_spec_delta=0.2,
loss_multiallelic_mass_spec_multiplier=1.0,
optimizer="rmsprop",
learning_rate=None,
)
"""
Loss and optimizer hyperparameters. Any values supported by keras may be
used.
"""
auxiliary_input_hyperparameter_defaults = HyperparameterDefaults(
auxiliary_input_features=["gene"],
auxiliary_input_feature_parameters={},
)
"""
Allele feature hyperparameters.
"""
hyperparameter_defaults = network_hyperparameter_defaults.extend(
fit_hyperparameter_defaults).extend(
early_stopping_hyperparameter_defaults).extend(
compile_hyperparameter_defaults).extend(
auxiliary_input_hyperparameter_defaults)
def __init__(self, **hyperparameters):
self.hyperparameters = self.hyperparameter_defaults.with_defaults(
hyperparameters)
self.network = None
self.fit_info = []
self.allele_representation_hash = None
import keras.backend as K
from keras.layers import (
Input,
TimeDistributed,
Dense,
Flatten,
RepeatVector,
concatenate,
Activation,
Lambda,
Add,
from keras.initializers import Zeros
if isinstance(class1_neural_network, Class1NeuralNetwork):
class1_neural_network = class1_neural_network.network()
peptide_shape = tuple(
int(x) for x in K.int_shape(class1_neural_network.inputs[0])[1:])
input_alleles = Input(
shape=(self.hyperparameters['max_alleles'],), name="allele")
input_peptides = Input(
shape=peptide_shape,
dtype='float32',
name='peptide')
peptides_flattened = Flatten()(input_peptides)
peptides_repeated = RepeatVector(self.hyperparameters['max_alleles'])(
peptides_flattened)
allele_representation = Embedding(
name="allele_representation",
input_dim=64, # arbitrary, how many alleles to have room for
output_dim=1029,
input_length=self.hyperparameters['max_alleles'],
trainable=False,
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
allele_flat = allele_representation
allele_peptide_merged = concatenate(
[peptides_repeated, allele_flat], name="allele_peptide_merged")
layer_names = [
layer.name for layer in class1_neural_network.layers
]
pan_allele_layer_initial_names = [
'allele', 'peptide',
'allele_representation', 'flattened_0', 'allele_flat',
'allele_peptide_merged', 'dense_0', 'dropout_0',
]
def startswith(lst, prefix):
return lst[:len(prefix)] == prefix
assert startswith(
layer_names, pan_allele_layer_initial_names), layer_names
layers = class1_neural_network.layers[
pan_allele_layer_initial_names.index(
"allele_peptide_merged") + 1:
]
node = allele_peptide_merged
layer_name_to_new_node = {
"allele_peptide_merged": allele_peptide_merged,
}
for layer in layers:
assert layer.name not in layer_name_to_new_node
input_layer_names = []
for inbound_node in layer._inbound_nodes:
for inbound_layer in inbound_node.inbound_layers:
input_layer_names.append(inbound_layer.name)
input_nodes = [
layer_name_to_new_node[name]
for name in input_layer_names
]
if len(input_nodes) == 1:
lifted = TimeDistributed(layer)
node = lifted(input_nodes[0])
else:
node = layer(input_nodes)
layer_name_to_new_node[layer.name] = node
pre_mask_affinity_predictor_matrix_output = node
# Apply allele mask: zero out all outputs corresponding to alleles
# with the special index 0.
def alleles_to_mask(x):
import keras.backend as K
return K.cast(K.expand_dims(K.not_equal(x, 0.0)), "float32")
allele_mask = Lambda(alleles_to_mask, name="allele_mask")(input_alleles)
affinity_predictor_matrix_output = Multiply(
name="affinity_matrix_output")([
# First allele (i.e. the first column of the alleles matrix) is given
# its own output. This is used for the affinity prediction loss.
affinity_predictor_output = Lambda(
lambda x: x[:, 0], name="affinity_output")(
affinity_predictor_matrix_output)
auxiliary_input = None
if self.hyperparameters['auxiliary_input_features']:
auxiliary_input = Input(
shape=(
self.hyperparameters['max_alleles'],
len(
AuxiliaryInputEncoder.get_columns(
self.hyperparameters['auxiliary_input_features'],
feature_parameters=self.hyperparameters[
'auxiliary_input_feature_parameters']))),
dtype="float32",
name="auxiliary")
node = concatenate(
[node, auxiliary_input], name="affinities_with_auxiliary")
layer = Dense(8, activation="tanh")
lifted = TimeDistributed(layer, name="presentation_adjustment_hidden1")
# By initializing to zero we ensure that before training the
# presentation output is the same as the affinity output.
layer = Dense(
1,
activation="tanh",
kernel_initializer=Zeros(),
bias_initializer=Zeros())
lifted = TimeDistributed(layer, name="presentation_adjustment")
def logit(x):
import tensorflow as tf
return - tf.log(1. / x - 1.)
pre_mask_presentation_output = Activation(
"sigmoid", name="unmasked_presentation_output")(
presentation_output_pre_sigmoid)
# Apply allele mask: zero out all outputs corresponding to alleles
# with the special index 0.
presentation_output = Multiply(name="presentation_output")([
self.network = Model(
inputs=[
input_peptides,
input_alleles,
] + ([] if auxiliary_input is None else [auxiliary_input]),
outputs=[
affinity_predictor_output,
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
)
self.network.summary()
def peptides_to_network_input(self, peptides):
"""
Encode peptides to the fixed-length encoding expected by the neural
network (which depends on the architecture).
Parameters
----------
peptides : EncodableSequences or list of string
Returns
-------
numpy.array
"""
encoder = EncodableSequences.create(peptides)
encoded = encoder.variable_length_to_fixed_length_vector_encoding(
**self.hyperparameters['peptide_encoding'])
assert len(encoded) == len(peptides)
return encoded
def allele_encoding_to_network_input(self, allele_encoding):
"""
Encode alleles to the fixed-length encoding expected by the neural
network (which depends on the architecture).
Parameters
----------
allele_encoding : AlleleEncoding
Returns
-------
(numpy.array, numpy.array)
Indices and allele representations.
"""
return (
allele_encoding.indices,
allele_encoding.allele_representations(
self.hyperparameters['allele_amino_acid_encoding']))
def fit(
self,
peptides,
labels,
allele_encoding,
affinities_mask=None, # True when a peptide/label is actually a peptide and an affinity
inequalities=None, # interpreted only for elements where affinities_mask is True, otherwise ignored
verbose=1,
progress_callback=None,
progress_preamble="",
progress_print_interval=5.0):
import keras.backend as K
assert isinstance(allele_encoding, MultipleAlleleEncoding)
assert (
allele_encoding.max_alleles_per_experiment ==
self.hyperparameters['max_alleles'])
encodable_peptides = EncodableSequences.create(peptides)
if labels is not None:
labels = numpy.array(labels, copy=False)
if inequalities is not None:
inequalities = numpy.array(inequalities, copy=True)
else:
inequalities = numpy.tile("=", len(labels))
if affinities_mask is not None:
affinities_mask = numpy.array(affinities_mask, copy=False)
else:
affinities_mask = numpy.tile(False, len(labels))
inequalities[~affinities_mask] = "="
random_negatives_planner = RandomNegativePeptides(
**RandomNegativePeptides.hyperparameter_defaults.subselect(
self.hyperparameters))
random_negatives_planner.plan(
peptides=encodable_peptides.sequences,
affinities=numpy.where(affinities_mask, labels, to_ic50(labels)),
alleles=[
numpy.random.choice(row[row != numpy.array(None)])
for row in allele_encoding.alleles
],
inequalities=inequalities)
peptide_input = self.peptides_to_network_input(encodable_peptides)
# Optional optimization
(allele_encoding_input, allele_representations) = (
self.allele_encoding_to_network_input(allele_encoding))
x_dict_without_random_negatives = {
'peptide': peptide_input,
'allele': allele_encoding_input,
}
if self.hyperparameters['auxiliary_input_features']:
auxiliary_encoder = AuxiliaryInputEncoder(
alleles=allele_encoding.alleles,
peptides=peptides)
x_dict_without_random_negatives[
'auxiliary'
] = auxiliary_encoder.get_array(
features=self.hyperparameters['auxiliary_input_features'],
feature_parameters=self.hyperparameters[
'auxiliary_input_feature_parameters'])
y1 = numpy.zeros(shape=len(labels))
y1[affinities_mask] = from_ic50(labels[affinities_mask])
random_negative_alleles = random_negatives_planner.get_alleles()
random_negatives_allele_encoding = MultipleAlleleEncoding(
experiment_names=random_negative_alleles,
experiment_to_allele_list=dict(
(a, [a]) for a in random_negative_alleles),
max_alleles_per_experiment=(
allele_encoding.max_alleles_per_experiment),
borrow_from=allele_encoding.allele_encoding)
num_random_negatives = random_negatives_planner.get_total_count()
# Reverse inequalities because from_ic50() flips the direction
# (i.e. lower affinity results in higher y values).
adjusted_inequalities = pandas.Series(inequalities).map({
"=": "=",
">": "<",
"<": ">",
}).values
adjusted_inequalities[~affinities_mask] = ">"
# Note: we are using "<" here not ">" because the inequalities are
# now in target-space (0-1) not affinity-space.
adjusted_inequalities_with_random_negative = numpy.concatenate([
numpy.tile("<", num_random_negatives),
adjusted_inequalities
])
random_negative_ic50 = self.hyperparameters[
'random_negative_affinity_min'
]
y1_with_random_negatives = numpy.concatenate([
numpy.tile(
from_ic50(random_negative_ic50), num_random_negatives),
y1,
])
affinities_loss = MSEWithInequalities()
encoded_y1 = affinities_loss.encode_y(
y1_with_random_negatives,
inequalities=adjusted_inequalities_with_random_negative)
mms_loss = MultiallelicMassSpecLoss(
delta=self.hyperparameters['loss_multiallelic_mass_spec_delta'],
multiplier=self.hyperparameters[
'loss_multiallelic_mass_spec_multiplier'])
y2 = labels.copy()
y2[affinities_mask] = -1
y2_with_random_negatives = numpy.concatenate([
numpy.tile(0.0, num_random_negatives),
y2,
])
encoded_y2 = mms_loss.encode_y(y2_with_random_negatives)
fit_info = collections.defaultdict(list)
allele_representations_hash = self.set_allele_representations(
allele_representations)
self.network.compile(
loss=[affinities_loss.keras_wrapped(), mms_loss.keras_wrapped(), ZeroLoss().keras_wrapped()],
#loss_weights=[1.0, 1.0, 1.0],
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
optimizer=self.hyperparameters['optimizer'])
if self.hyperparameters['learning_rate'] is not None:
K.set_value(
self.network.optimizer.lr,
self.hyperparameters['learning_rate'])
fit_info["learning_rate"] = float(
K.get_value(self.network.optimizer.lr))
if verbose:
self.network.summary()
batch_generator = MultiallelicMassSpecBatchGenerator(
MultiallelicMassSpecBatchGenerator.hyperparameter_defaults.subselect(
self.hyperparameters))
start = time.time()
batch_generator.plan(
affinities_mask=numpy.concatenate([
numpy.tile(True, num_random_negatives),
affinities_mask
]),
experiment_names=numpy.concatenate([
numpy.tile(None, num_random_negatives),
allele_encoding.experiment_names
]),
alleles_matrix=numpy.concatenate([
random_negatives_allele_encoding.alleles,
allele_encoding.alleles,
]),
is_binder=numpy.concatenate([
numpy.tile(False, num_random_negatives),
numpy.where(affinities_mask, labels, to_ic50(labels)) < 1000.0
]),
potential_validation_mask=numpy.concatenate([
numpy.tile(False, num_random_negatives),
numpy.tile(True, len(labels))
]),
)
if verbose:
print("Generated batch generation plan in %0.2f sec." % (
time.time() - start))
print(batch_generator.summary())
min_val_loss_iteration = None
min_val_loss = None
last_progress_print = 0
start = time.time()
x_dict_with_random_negatives = {}
for i in range(self.hyperparameters['max_epochs']):
epoch_start = time.time()
random_negative_peptides = EncodableSequences.create(
random_negatives_planner.get_peptides())
random_negative_peptides_encoding = (
self.peptides_to_network_input(random_negative_peptides))
if not x_dict_with_random_negatives:
if len(random_negative_peptides) > 0:
x_dict_with_random_negatives[
"peptide"
] = numpy.concatenate([
random_negative_peptides_encoding,
x_dict_without_random_negatives['peptide'],
])
x_dict_with_random_negatives[
'allele'
] = numpy.concatenate([
self.allele_encoding_to_network_input(
random_negatives_allele_encoding)[0],
x_dict_without_random_negatives['allele']
])
if 'auxiliary' in x_dict_without_random_negatives:
random_negative_auxiliary_encoder = AuxiliaryInputEncoder(
alleles=random_negatives_allele_encoding.alleles,
#peptides=random_negative_peptides.sequences
)
x_dict_with_random_negatives['auxiliary'] = (
numpy.concatenate([
random_negative_auxiliary_encoder.get_array(
features=self.hyperparameters[
'auxiliary_input_features'],
feature_parameters=self.hyperparameters[
'auxiliary_input_feature_parameters']),
x_dict_without_random_negatives['auxiliary']
]))
else:
x_dict_with_random_negatives = (
x_dict_without_random_negatives)
else:
# Update x_dict_with_random_negatives in place.
# This is more memory efficient than recreating it as above.
if len(random_negative_peptides) > 0:
x_dict_with_random_negatives[
"peptide"
][:num_random_negatives] = random_negative_peptides_encoding
(train_generator, test_generator) = (
batch_generator.get_train_and_test_generators(
x_dict=x_dict_with_random_negatives,
y_list=[encoded_y1, encoded_y2, encoded_y2],
epochs=1))
self.assert_allele_representations_hash(allele_representations_hash)
fit_history = self.network.fit_generator(
train_generator,
steps_per_epoch=batch_generator.num_train_batches,
epochs=i + 1,
initial_epoch=i,
verbose=verbose,
use_multiprocessing=False,
workers=0,
validation_data=test_generator,
validation_steps=batch_generator.num_test_batches)
epoch_time = time.time() - epoch_start
for (key, value) in fit_history.history.items():
fit_info[key].extend(value)
if numpy.isnan(fit_info['loss'][-1]):
import ipdb ; ipdb.set_trace()
raise ValueError("NaN loss")
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
# Print progress no more often than once every few seconds.
if progress_print_interval is not None and (
not last_progress_print or (
time.time() - last_progress_print
> progress_print_interval)):
print((progress_preamble + " " +
"Epoch %3d / %3d [%0.2f sec]: loss=%g. "
"Min val loss (%s) at epoch %s" % (
i,
self.hyperparameters['max_epochs'],
epoch_time,
fit_info['loss'][-1],
str(min_val_loss),
min_val_loss_iteration)).strip())
last_progress_print = time.time()
if batch_generator.num_test_batches:
#import ipdb ; ipdb.set_trace()
val_loss = fit_info['val_loss'][-1]
if min_val_loss is None or (
val_loss < min_val_loss -
self.hyperparameters['min_delta']):
min_val_loss = val_loss
min_val_loss_iteration = i
if self.hyperparameters['early_stopping']:
threshold = (
min_val_loss_iteration +
self.hyperparameters['patience'])
if i > threshold:
if progress_print_interval is not None:
print((progress_preamble + " " +
"Stopping at epoch %3d / %3d: loss=%g. "
"Min val loss (%g) at epoch %s" % (
i,
self.hyperparameters['max_epochs'],
fit_info['loss'][-1],
(
min_val_loss if min_val_loss is not None
else numpy.nan),
min_val_loss_iteration)).strip())
break
if progress_callback:
progress_callback()
fit_info["time"] = time.time() - start
fit_info["num_points"] = len(labels)
self.fit_info.append(dict(fit_info))
return {
'batch_generator': batch_generator,
'last_x': x_dict_with_random_negatives,
'last_y': [encoded_y1, encoded_y2, encoded_y2],
'fit_info': fit_info,
}
Predictions = collections.namedtuple(
"ligandone_neural_network_predictions",
"score affinity")
def predict(
self,
peptides,
allele_encoding=None,
batch_size=DEFAULT_PREDICT_BATCH_SIZE):
peptides = EncodableSequences.create(peptides)
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
(allele_encoding_input, allele_representations) = (
self.allele_encoding_to_network_input(allele_encoding.compact()))
self.set_allele_representations(allele_representations)
x_dict = {
'peptide': self.peptides_to_network_input(peptides),
'allele': allele_encoding_input,
}
if self.hyperparameters['auxiliary_input_features']:
auxiliary_encoder = AuxiliaryInputEncoder(
alleles=allele_encoding.alleles,
peptides=peptides.sequences)
x_dict[
'auxiliary'
] = auxiliary_encoder.get_array(
features=self.hyperparameters['auxiliary_input_features'],
feature_parameters=self.hyperparameters[
'auxiliary_input_feature_parameters'])
predictions = self.Predictions._make([
numpy.squeeze(output)
for output in self.network.predict(
x_dict, batch_size=batch_size)[1:]
])
return predictions
def set_allele_representations(self, allele_representations):
"""
"""
from keras.models import clone_model
import keras.backend as K
import tensorflow as tf
reshaped = allele_representations.reshape(
(allele_representations.shape[0], -1))
original_model = self.network
layer = original_model.get_layer("allele_representation")
existing_weights_shape = (layer.input_dim, layer.output_dim)
# Only changes to the number of supported alleles (not the length of
# the allele sequences) are allowed.
assert existing_weights_shape[1:] == reshaped.shape[1:]
if existing_weights_shape[0] > reshaped.shape[0]:
# Extend with NaNs so we can avoid having to reshape the weights
# matrix, which is expensive.
reshaped = numpy.append(
reshaped,
numpy.ones([
existing_weights_shape[0] - reshaped.shape[0],
reshaped.shape[1]
]) * numpy.nan,
axis=0)
if existing_weights_shape != reshaped.shape:
print(
"Performing network surgery", existing_weights_shape, reshaped.shape)
# Network surgery required. Make a new network with this layer's
# dimensions changed. Kind of a hack.
layer.input_dim = reshaped.shape[0]
new_model = clone_model(original_model)
# copy weights for other layers over
for layer in new_model.layers:
if layer.name != "allele_representation":
layer.set_weights(
original_model.get_layer(name=layer.name).get_weights())
self.network = new_model
layer = new_model.get_layer("allele_representation")
# Disable the old model to catch bugs.
def throw(*args, **kwargs):
raise RuntimeError("Using a disabled model!")
original_model.predict = \
original_model.fit = \
original_model.fit_generator = throw
layer.set_weights([reshaped])
self.allele_representation_hash = hashlib.sha1(
allele_representations.tobytes()).hexdigest()
return self.allele_representation_hash
def assert_allele_representations_hash(self, value):
numpy.testing.assert_equal(self.allele_representation_hash, value)
def __getstate__(self):
"""
serialize to a dict. Model weights are included. For pickle support.
Returns
-------
dict
"""
result = self.get_config()
result['network_weights'] = self.get_weights()
return result
def __setstate__(self, state):
"""
Deserialize. For pickle support.
"""
network_json = state.pop("network_json")
network_weights = state.pop("network_weights")
self.__dict__.update(state)
if network_json is not None:
import keras.models
self.network = keras.models.model_from_json(network_json)
if network_weights is not None:
self.network.set_weights(network_weights)
def get_weights(self):
"""
Get the network weights
Returns
-------
list of numpy.array giving weights for each layer or None if there is no
network
"""
if self.network is None:
return None
return self.network.get_weights()
def get_config(self):
"""
serialize to a dict all attributes except model weights
Returns
-------
dict
"""
result = dict(self.__dict__)
result['network_json'] = None
if self.network:
result['network_json'] = self.network.to_json()
return result
@classmethod
def from_config(cls, config, weights=None):
"""
deserialize from a dict returned by get_config().
Parameters
----------
config : dict
weights : list of array, optional
Network weights to restore
weights_loader : callable, optional
Function to call (no arguments) to load weights when needed
Returns
-------
Class1NeuralNetwork
"""
config = dict(config)
instance = cls(**config.pop('hyperparameters'))
network_json = config.pop('network_json')
instance.__dict__.update(config)
assert instance.network is None
if network_json is not None:
import keras.models
instance.network = keras.models.model_from_json(network_json)