Newer
Older
Filter and combine various peptide/MHC datasets to derive a composite training set,
optionally including eluted peptides identified by mass-spec.
"""
import sys
import argparse
import pandas
import mhcnames
def normalize_allele_name(s):
try:
return mhcnames.normalize_allele_name(s)
except Exception:
return "UNKNOWN"
parser = argparse.ArgumentParser(usage=__doc__)
parser.add_argument(
"--data-kim2014",
action="append",
default=[],
help="Path to Kim 2014-style affinity data")
parser.add_argument(
"--data-iedb",
action="append",
default=[],
help="Path to IEDB-style affinity data (e.g. mhc_ligand_full.csv)")
parser.add_argument(
"--data-systemhc-atlas",
action="append",
default=[],
help="Path to systemhc-atlas-style mass-spec data")
parser.add_argument(
"--data-abelin-mass-spec",
action="append",
default=[],
help="Path to Abelin Immunity 2017 mass-spec hits")
parser.add_argument(
action="store_true",
default=False,
help="Include mass-spec observations in IEDB")
parser.add_argument(
"--out-csv",
required=True,
help="Result file")
"Negative": (5000.0, ">"),
"Positive": (500.0, "<"), # used for mass-spec hits
"Positive-High": (100.0, "<"),
"Positive-Intermediate": (1000.0, "<"),
"Positive-Low": (5000.0, "<"),
QUALITATIVE_TO_AFFINITY = dict(
(key, value[0]) for (key, value)
in QUALITATIVE_TO_AFFINITY_AND_INEQUALITY.items())
QUALITATIVE_TO_INEQUALITY = dict(
(key, value[1]) for (key, value)
in QUALITATIVE_TO_AFFINITY_AND_INEQUALITY.items())
EXCLUDE_IEDB_ALLELES = [
"HLA class I",
"HLA class II",
]
def load_data_kim2014(filename):
df = pandas.read_table(filename)
print("Loaded kim2014 data: %s" % str(df.shape))
df["measurement_source"] = "kim2014"
df["measurement_value"] = df.meas
df["measurement_type"] = (df.inequality == "=").map({
True: "quantitative",
False: "qualitative",
})
df["original_allele"] = df.mhc
df["peptide"] = df.sequence
df["allele"] = df.mhc.map(normalize_allele_name)
print("Dropping un-parseable alleles: %s" % ", ".join(
df.ix[df.allele == "UNKNOWN"]["mhc"].unique()))
df = df.ix[df.allele != "UNKNOWN"]
print("Loaded kim2014 data: %s" % str(df.shape))
return df
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
def load_data_systemhc_atlas(filename, min_probability=0.99):
df = pandas.read_csv(filename)
print("Loaded systemhc atlas data: %s" % str(df.shape))
df["measurement_source"] = "systemhc-atlas"
df["measurement_value"] = QUALITATIVE_TO_AFFINITY["Positive"]
df["measurement_inequality"] = "<"
df["measurement_type"] = "qualitative"
df["original_allele"] = df.top_allele
df["peptide"] = df.search_hit
df["allele"] = df.top_allele.map(normalize_allele_name)
print("Dropping un-parseable alleles: %s" % ", ".join(
str(x) for x in df.ix[df.allele == "UNKNOWN"]["top_allele"].unique()))
df = df.loc[df.allele != "UNKNOWN"]
print("Systemhc atlas data now: %s" % str(df.shape))
print("Dropping data points with probability < %f" % min_probability)
df = df.loc[df.prob >= min_probability]
print("Systemhc atlas data now: %s" % str(df.shape))
print("Removing duplicates")
df = df.drop_duplicates(["allele", "peptide"])
print("Systemhc atlas data now: %s" % str(df.shape))
return df
def load_data_abelin_mass_spec(filename):
df = pandas.read_csv(filename)
print("Loaded Abelin mass-spec data: %s" % str(df.shape))
df["measurement_source"] = "abelin-mass-spec"
df["measurement_value"] = QUALITATIVE_TO_AFFINITY["Positive"]
df["measurement_inequality"] = "<"
df["measurement_type"] = "qualitative"
df["original_allele"] = df.allele
df["allele"] = df.original_allele.map(normalize_allele_name)
print("Dropping un-parseable alleles: %s" % ", ".join(
str(x) for x in df.ix[df.allele == "UNKNOWN"]["allele"].unique()))
df = df.loc[df.allele != "UNKNOWN"]
print("Abelin mass-spec data now: %s" % str(df.shape))
print("Removing duplicates")
df = df.drop_duplicates(["allele", "peptide"])
print("Abelin mass-spec data now: %s" % str(df.shape))
return df
def load_data_iedb(iedb_csv, include_qualitative=True, include_mass_spec=False):
iedb_df = pandas.read_csv(iedb_csv, skiprows=1, low_memory=False)
print("Loaded iedb data: %s" % str(iedb_df.shape))
print("Selecting only class I")
iedb_df = iedb_df.ix[
iedb_df["MHC allele class"].str.strip().str.upper() == "I"
]
print("New shape: %s" % str(iedb_df.shape))
print("Dropping known unusuable alleles")
iedb_df = iedb_df.ix[
~iedb_df["Allele Name"].isin(EXCLUDE_IEDB_ALLELES)
]
iedb_df = iedb_df.ix[
(~iedb_df["Allele Name"].str.contains("mutant")) &
(~iedb_df["Allele Name"].str.contains("CD1"))
]
iedb_df["allele"] = iedb_df["Allele Name"].map(normalize_allele_name)
print("Dropping un-parseable alleles: %s" % ", ".join(
iedb_df.ix[iedb_df.allele == "UNKNOWN"]["Allele Name"].unique()))
iedb_df = iedb_df.ix[iedb_df.allele != "UNKNOWN"]
print("IEDB measurements per allele:\n%s" % iedb_df.allele.value_counts())
quantitative = iedb_df.ix[iedb_df["Units"] == "nM"].copy()
quantitative["measurement_type"] = "quantitative"
print("Quantitative measurements: %d" % len(quantitative))
qualitative = iedb_df.ix[iedb_df["Units"] != "nM"].copy()
qualitative["measurement_type"] = "qualitative"
print("Qualitative measurements: %d" % len(qualitative))
if not include_mass_spec:
qualitative = qualitative.ix[
(~qualitative["Method/Technique"].str.contains("mass spec"))
].copy()
qualitative["Quantitative measurement"] = (
qualitative["Qualitative Measure"].map(QUALITATIVE_TO_AFFINITY))
qualitative["measurement_inequality"] = (
qualitative["Qualitative Measure"].map(QUALITATIVE_TO_INEQUALITY))
print("Qualitative measurements (possibly after dropping MS): %d" % (
len(qualitative)))
iedb_df = pandas.concat(
(
([quantitative]) +
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
ignore_index=True)
print("IEDB measurements per allele:\n%s" % iedb_df.allele.value_counts())
print("Subselecting to valid peptides. Starting with: %d" % len(iedb_df))
iedb_df["Description"] = iedb_df.Description.str.strip()
iedb_df = iedb_df.ix[
iedb_df.Description.str.match("^[ACDEFGHIKLMNPQRSTVWY]+$")
]
print("Now: %d" % len(iedb_df))
print("Annotating last author and category")
iedb_df["last_author"] = iedb_df.Authors.map(
lambda x: (
x.split(";")[-1]
.split(",")[-1]
.split(" ")[-1]
.strip()
.replace("*", ""))).values
iedb_df["category"] = (
iedb_df["last_author"] + " - " + iedb_df["Method/Technique"]).values
train_data = pandas.DataFrame()
train_data["peptide"] = iedb_df.Description.values
train_data["measurement_value"] = iedb_df[
"Quantitative measurement"
].values
train_data["measurement_source"] = iedb_df.category.values
train_data["measurement_inequality"] = iedb_df.measurement_inequality.values
train_data["allele"] = iedb_df["allele"].values
train_data["original_allele"] = iedb_df["Allele Name"].values
train_data["measurement_type"] = iedb_df["measurement_type"].values
train_data = train_data.drop_duplicates().reset_index(drop=True)
return train_data
def run():
args = parser.parse_args(sys.argv[1:])
dfs = []
for filename in args.data_iedb:
df = load_data_iedb(filename, include_mass_spec=args.include_iedb_mass_spec)
dfs.append(df)
for filename in args.data_kim2014:
df = load_data_kim2014(filename)
df["allele_peptide"] = df.allele + "_" + df.peptide
# Give precedence to IEDB data.
if dfs:
iedb_df = dfs[0]
iedb_df["allele_peptide"] = iedb_df.allele + "_" + iedb_df.peptide
print("Dropping kim2014 data present in IEDB.")
df = df.ix[
~df.allele_peptide.isin(iedb_df.allele_peptide)
]
print("Kim2014 data now: %s" % str(df.shape))
dfs.append(df)
for filename in args.data_systemhc_atlas:
df = load_data_systemhc_atlas(filename)
dfs.append(df)
for filename in args.data_abelin_mass_spec:
df = load_data_abelin_mass_spec(filename)
dfs.append(df)
df = pandas.concat(dfs, ignore_index=True)
print("Combined df: %s" % (str(df.shape)))
print("Removing combined duplicates")
df = df.drop_duplicates(["allele", "peptide", "measurement_value"])
print("New combined df: %s" % (str(df.shape)))
df = df[[
"allele",
"peptide",
"measurement_value",
"measurement_type",
"measurement_source",
"original_allele",
]].sort_values(["allele", "peptide"]).dropna()
print("Final combined df: %s" % (str(df.shape)))
df.to_csv(args.out_csv, index=False)
print("Wrote: %s" % args.out_csv)
if __name__ == '__main__':
run()