Skip to content
Snippets Groups Projects
test_speed.py 1.9 KiB
Newer Older
Tim O'Donnell's avatar
Tim O'Donnell committed
import numpy
numpy.random.seed(0)
import time
import cProfile
import pstats
Tim O'Donnell's avatar
Tim O'Donnell committed
import collections
Tim O'Donnell's avatar
Tim O'Donnell committed

import pandas

from mhcflurry import Class1AffinityPredictor
Tim O'Donnell's avatar
Tim O'Donnell committed
from mhcflurry.encodable_sequences import EncodableSequences
Tim O'Donnell's avatar
Tim O'Donnell committed
from mhcflurry.common import random_peptides

DOWNLOADED_PREDICTOR = Class1AffinityPredictor.load()

Tim O'Donnell's avatar
Tim O'Donnell committed
NUM = 10000
Tim O'Donnell's avatar
Tim O'Donnell committed

def test_speed(profile=False):
Tim O'Donnell's avatar
Tim O'Donnell committed
    starts = collections.OrderedDict()
    timings = collections.OrderedDict()
    profilers = collections.OrderedDict()
Tim O'Donnell's avatar
Tim O'Donnell committed

    def start(name):
        starts[name] = time.time()
        if profile:
            profilers[name] = cProfile.Profile()
            profilers[name].enable()

    def end(name):
        timings[name] = time.time() - starts[name]
        if profile:
            profilers[name].disable()

Tim O'Donnell's avatar
Tim O'Donnell committed
    start("first")
    DOWNLOADED_PREDICTOR.predict(["SIINFEKL"], allele="HLA-A*02:01")
    end("first")

    peptides = random_peptides(NUM)
    start("pred_%d" % NUM)
    DOWNLOADED_PREDICTOR.predict(peptides, allele="HLA-A*02:01")
    end("pred_%d" % NUM)

Tim O'Donnell's avatar
Tim O'Donnell committed
    NUM2 = 10000
    peptides = EncodableSequences.create(random_peptides(NUM2, length=13))
    start("encode_blosum_%d" % NUM2)
    peptides.variable_length_to_fixed_length_vector_encoding("BLOSUM62")
    end("encode_blosum_%d" % NUM2)

    start("pred_already_encoded_%d" % NUM2)
    DOWNLOADED_PREDICTOR.predict(peptides, allele="HLA-A*02:01")
    end("pred_already_encoded_%d" % NUM2)

Tim O'Donnell's avatar
Tim O'Donnell committed
    print("SPEED BENCHMARK")
    print("Results:\n%s" % str(pandas.Series(timings)))

    return dict(
        (key, pstats.Stats(value)) for (key, value) in profilers.items())


if __name__ == '__main__':
    # If run directly from python, do profiling and leave the user in a shell
    # to explore results.

    result = test_speed(profile=True)
    result["pred_%d" % NUM].sort_stats("cumtime").reverse_order().print_stats()

    # Leave in ipython
    locals().update(result)
    import ipdb ; ipdb.set_trace()