Newer
Older
# Copyright (c) 2016. Mount Sinai School of Medicine
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
'''
Class1 allele-specific cross validation and training script.
What it does:
* Run cross validation on a dataset over the specified model architectures
* Select the best architecture for each allele
* Re-train the best architecture on the full data for that allele
* Test "production" predictors on a held-out test set if available
Features:
* Supports imputation as a hyperparameter that can be searched over
* Parallelized with concurrent.futures
The parallelization is primary intended to be used with an
alternative concurrent.futures Executor such as dask-distributed that supports
multi-node parallelization. Theano in particular seems to have deadlocks
when running with single-node parallelization.
'''
from __future__ import (
print_function,
division,
absolute_import,
)
import sys
import argparse
import json
import logging
import time
import os
import socket
import hashlib
import pickle
import numpy
from .. import parallelism
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from ..dataset import Dataset
from ..imputation_helpers import imputer_from_name
from .cross_validation import cross_validation_folds
from .train import (
impute_and_select_allele,
train_across_models_and_folds,
AlleleSpecificTrainTestFold)
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument(
"--train-data",
metavar="X.csv",
required=True,
help="Training data")
parser.add_argument(
"--test-data",
metavar="X.csv",
help="Optional test data")
parser.add_argument(
"--model-architectures",
metavar="X.json",
type=argparse.FileType('r'),
required=True,
help="JSON file giving model architectures to assess in cross validation."
" Can be - to read from stdin")
parser.add_argument(
"--imputer-description",
metavar="X.json",
type=argparse.FileType('r'),
help="JSON. Can be - to read from stdin")
parser.add_argument(
"--alleles",
metavar="ALLELE",
nargs="+",
default=None,
help="Use only the specified alleles")
parser.add_argument(
"--out-cv-results",
metavar="X.csv",
help="Write cross validation results to the given file")
parser.add_argument(
"--out-production-results",
metavar="X.csv",
help="Write production model information to the given file")
parser.add_argument(
"--out-models-dir",
metavar="DIR",
help="Write production models to files in this dir")
parser.add_argument(
"--max-models",
type=int,
metavar="N",
help="Use only the first N models")
parser.add_argument(
"--cv-num-folds",
type=int,
default=3,
metavar="N",
help="Number of cross validation folds. Default: %(default)s")
parser.add_argument(
"--cv-folds-per-task",
type=int,
default=10,
metavar="N",
help="When parallelizing cross validation, each task trains one model "
"architecture on N folds. Set to 1 for maximum potential parallelism. "
"This is less efficient if you have limited workers, however, since "
"the model must get compiled for each task. Default: %(default)s.")
parser.add_argument(
"--dask-scheduler",
metavar="HOST:PORT",
help="Host and port of dask distributed scheduler")
parser.add_argument(
"--num-local-processes",
metavar="N",
type=int,
help="Processes (exclusive with --dask-scheduler and --num-local-threads)")
parser.add_argument(
"--num-local-threads",
metavar="N",
type=int,
default=1,
help="Threads (exclusive with --dask-scheduler and --num-local-processes)")
parser.add_argument(
"--min-samples-per-allele",
default=100,
metavar="N",
help="Don't train predictors for alleles with fewer than N samples. "
"Set to 0 to disable filtering. Default: %(default)s",
type=int)
parser.add_argument(
"--quiet",
action="store_true",
default=False,
help="Output less info")
parser.add_argument(
"--verbose",
action="store_true",
default=False,
help="Output more info")
try:
import kubeface
kubeface.Client.add_args(parser)
except ImportError:
logging.error("Kubeface support disabled, not installed.")
def run(argv=sys.argv[1:]):
args = parser.parse_args(argv)
if args.verbose:
logging.root.setLevel(level="DEBUG")
elif not args.quiet:
logging.root.setLevel(level="INFO")
logging.info("Running with arguments: %s" % args)
# Set parallel backend
backend = parallelism.DaskDistributedParallelBackend(
args.dask_scheduler)
elif hasattr(args, 'storage_prefix') and args.storage_prefix:
backend = parallelism.KubefaceParallelBackend(args)
else:
if args.num_local_processes:
backend = parallelism.ConcurrentFuturesParallelBackend(
args.num_local_processes,
processes=True)
else:
backend = parallelism.ConcurrentFuturesParallelBackend(
args.num_local_threads,
processes=False)
parallelism.set_default_backend(backend)
logging.info("Using parallel backend: %s" % backend)
backend = parallelism.get_default_backend()
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
model_architectures = json.loads(args.model_architectures.read())
logging.info("Read %d model architectures" % len(model_architectures))
if args.max_models:
model_architectures = model_architectures[:args.max_models]
logging.info(
"Subselected to %d model architectures" % len(model_architectures))
train_data = Dataset.from_csv(args.train_data)
logging.info("Loaded training dataset: %s" % train_data)
test_data = None
if args.test_data:
test_data = Dataset.from_csv(args.test_data)
logging.info("Loaded testing dataset: %s" % test_data)
if args.min_samples_per_allele:
train_data = train_data.filter_alleles_by_count(
args.min_samples_per_allele)
logging.info(
"Filtered training dataset to alleles with >= %d observations: %s"
% (args.min_samples_per_allele, train_data))
if any(x['impute'] for x in model_architectures):
if not args.imputer_description:
parser.error(
"--imputer-description is required when any models "
"use imputation")
imputer_description = json.load(args.imputer_description)
logging.info("Loaded imputer description: %s" % imputer_description)
imputer_kwargs_defaults = {
'min_observations_per_peptide': 2,
'min_observations_per_allele': 10,
}
impute_kwargs = dict(
(key, imputer_description.pop(key, default))
for (key, default) in imputer_kwargs_defaults.items())
imputer = imputer_from_name(**imputer_description)
else:
imputer = None
impute_kwargs = {}
logging.info(
"Generating cross validation folds. Imputation: %s" %
("yes" if imputer else "no"))
cv_folds = cross_validation_folds(
train_data,
n_folds=args.cv_num_folds,
imputer=imputer,
impute_kwargs=impute_kwargs,
drop_similar_peptides=True,
logging.info(
"Training %d model architectures across %d folds = %d models"
% (
len(model_architectures),
len(cv_folds),
len(model_architectures) * len(cv_folds)))
start = time.time()
cv_results = train_across_models_and_folds(
cv_folds,
model_architectures,
folds_per_task=args.cv_folds_per_task)
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
logging.info(
"Completed cross validation in %0.2f seconds" % (time.time() - start))
cv_results["summary_score"] = (
cv_results.test_auc.fillna(0) +
cv_results.test_tau.fillna(0) +
cv_results.test_f1.fillna(0))
allele_and_model_to_ranks = {}
for allele in cv_results.allele.unique():
model_ranks = (
cv_results.ix[cv_results.allele == allele]
.groupby("model_num")
.summary_score
.mean()
.rank(method='first', ascending=False, na_option="top")
.astype(int))
allele_and_model_to_ranks[allele] = model_ranks.to_dict()
cv_results["summary_rank"] = [
allele_and_model_to_ranks[row.allele][row.model_num]
for (_, row) in cv_results.iterrows()
]
if args.out_cv_results:
cv_results.to_csv(args.out_cv_results, index=False)
print("Wrote: %s" % args.out_cv_results)
numpy.testing.assert_equal(
set(cv_results.summary_rank),
set(1 + numpy.arange(len(model_architectures))))
best_architectures_by_allele = (
cv_results.ix[cv_results.summary_rank == 1]
.set_index("allele")
.model_num
.to_dict())
logging.info("")
train_folds = []
train_models = []
for (allele_num, allele) in enumerate(cv_results.allele.unique()):
best_index = best_architectures_by_allele[allele]
architecture = model_architectures[best_index]
train_models.append(architecture)
logging.info(
"Allele: %s best architecture is index %d: %s" %
(allele, best_index, architecture))
if architecture['impute']:
imputation_future = backend.submit(
impute_and_select_allele,
train_data,
imputer=imputer,
allele=allele,
**impute_kwargs)
else:
imputation_future = None
test_data_this_allele = None
if test_data is not None:
test_data_this_allele = test_data.get_allele(allele)
fold = AlleleSpecificTrainTestFold(
allele=allele,
train=train_data.get_allele(allele),
# Here we set imputed_train to the imputation *task* if
# imputation was used on this fold. We set this to the actual
# imputed training dataset a few lines farther down. This
# complexity is because we want to be able to parallelize
# the imputations so we have to queue up the tasks first.
# If we are not doing imputation then the imputation_task
# is None.
imputed_train=imputation_future,
test=test_data_this_allele)
train_folds.append(fold)
train_folds = [
result_fold._replace(imputed_train=(
result_fold.imputed_train.result()
if result_fold.imputed_train is not None
else None))
for result_fold in train_folds
]
logging.info("Training %d production models" % len(train_folds))
start = time.time()
train_results = train_across_models_and_folds(
train_folds,
train_models,
cartesian_product_of_folds_and_models=False,
return_predictors=args.out_models_dir is not None)
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
logging.info(
"Completed production training in %0.2f seconds"
% (time.time() - start))
if args.out_models_dir:
predictor_names = []
run_name = (hashlib.sha1(
("%s-%f" % (socket.gethostname(), time.time())).encode())
.hexdigest()[:8])
for (_, row) in train_results.iterrows():
predictor_name = "-".join(str(x) for x in [
row.allele,
"impute" if row.model_impute else "noimpute",
"then".join(str(s) for s in row.model_layer_sizes),
"dropout%g" % row.model_dropout_probability,
"fracneg%g" % row.model_fraction_negative,
run_name,
]).replace(".", "_")
predictor_names.append(predictor_name)
out_path = os.path.join(
args.out_models_dir, predictor_name + ".pickle")
with open(out_path, "wb") as fd:
# Use this protocol so we have Python 2 compatability.
pickle.dump(row.predictor, fd, protocol=2)
print("Wrote: %s" % out_path)
del train_results["predictor"]
train_results["predictor_name"] = predictor_names
if args.out_production_results:
train_results.to_csv(args.out_production_results, index=False)
print("Wrote: %s" % args.out_production_results)