Newer
Older
# Copyright (c) 2015. Mount Sinai School of Medicine
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import (
print_function,
division,
absolute_import,
)
import keras
from keras.models import Sequential
from keras.layers.core import Dense, Activation, Flatten, Dropout
from keras.layers.embeddings import Embedding
import theano
theano.config.exception_verbosity = 'high'
Alex Rubinsteyn
committed
def compile_forward_predictor(model, theano_mode=None):
"""
In cases where we want to get predictions from a model that hasn't
been compiled (to avoid overhead of compiling training code),
use this helper to only compile the subset of Theano needed for
forward-propagation/predictions.
"""
model.X_test = model.get_input(train=False)
model.y_test = model.get_output(train=False)
if type(model.X_test) == list:
predict_ins = model.X_test
else:
predict_ins = [model.X_test]
model._predict = theano.function(
predict_ins,
model.y_test,
allow_input_downcast=True,
mode=theano_mode)
def make_network(
input_size,
embedding_input_dim=None,
embedding_output_dim=None,
layer_sizes=[100],
activation="relu",
init="lecun_uniform",
loss="mse",
output_activation="sigmoid",
dropout_probability=0.0,
model=None,
Alex Rubinsteyn
committed
optimizer=None,
learning_rate=0.001,
Alex Rubinsteyn
committed
compile_for_training=True):
if model is None:
model = Sequential()
if optimizer is None:
optimizer = keras.optimizers.RMSprop(
lr=learning_rate,
rho=0.9,
epsilon=1e-6)
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
if embedding_input_dim:
if not embedding_output_dim:
raise ValueError(
"Both embedding_input_dim and embedding_output_dim must be set")
model.add(Embedding(
input_dim=embedding_input_dim,
output_dim=embedding_output_dim,
init=init))
model.add(Flatten())
input_size = input_size * embedding_output_dim
layer_sizes = (input_size,) + tuple(layer_sizes)
for i, dim in enumerate(layer_sizes):
if i == 0:
# input is only conceptually a layer of the network,
# don't need to actually do anything
continue
previous_dim = layer_sizes[i - 1]
# hidden layer fully connected layer
model.add(
Dense(
input_dim=previous_dim,
output_dim=dim,
init=init))
model.add(Activation(activation))
if dropout_probability > 0:
model.add(Dropout(dropout_probability))
# output
model.add(Dense(
input_dim=layer_sizes[-1],
output_dim=1,
init=init))
model.add(Activation(output_activation))
Alex Rubinsteyn
committed
if compile_for_training:
model.compile(loss=loss, optimizer=optimizer)
else:
compile_forward_predictor(model)
def make_hotshot_network(
peptide_length=9,
layer_sizes=[500],
activation="relu",
init="lecun_uniform",
loss="mse",
output_activation="sigmoid",
dropout_probability=0.0,
optimizer=None,
learning_rate=0.001):
return make_network(
input_size=peptide_length * 20,
layer_sizes=layer_sizes,
activation=activation,
init=init,
loss=loss,
output_activation=output_activation,
dropout_probability=dropout_probability,
optimizer=optimizer,
learning_rate=learning_rate)
def make_embedding_network(
peptide_length=9,
embedding_input_dim=20,
embedding_output_dim=20,
layer_sizes=[500],
activation="relu",
init="lecun_uniform",
loss="mse",
output_activation="sigmoid",
dropout_probability=0.0,
optimizer=None,
learning_rate=0.001):
return make_network(
input_size=peptide_length,
embedding_input_dim=embedding_input_dim,
embedding_output_dim=embedding_output_dim,
layer_sizes=layer_sizes,
activation=activation,
init=init,
loss=loss,
output_activation=output_activation,
dropout_probability=dropout_probability,
optimizer=optimizer,
learning_rate=learning_rate)