Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
"""
Refine pan-allele predictors using multiallelic mass spec.
"""
import argparse
import os
import signal
import sys
import time
import traceback
import hashlib
from pprint import pprint
import numpy
import pandas
import tqdm # progress bar
tqdm.monitor_interval = 0 # see https://github.com/tqdm/tqdm/issues/481
from .class1_affinity_predictor import Class1AffinityPredictor
from .encodable_sequences import EncodableSequences
from .allele_encoding import AlleleEncoding
from .common import configure_logging
from .local_parallelism import (
worker_pool_with_gpu_assignments_from_args,
add_local_parallelism_args)
from .cluster_parallelism import (
add_cluster_parallelism_args,
cluster_results_from_args)
from .regression_target import from_ic50
# To avoid pickling large matrices to send to child processes when running in
# parallel, we use this global variable as a place to store data. Data that is
# stored here before creating the thread pool will be inherited to the child
# processes upon fork() call, allowing us to share large data with the workers
# via shared memory.
GLOBAL_DATA = {}
parser = argparse.ArgumentParser(usage=__doc__)
parser.add_argument(
"--multiallelic-data",
metavar="FILE.csv",
required=False,
help="Multiallelic mass spec data.")
parser.add_argument(
"--monoallelic-data",
metavar="FILE.csv",
required=False,
help=(
"Affinity meaurements and monoallelic mass spec data."))
parser.add_argument(
"--models-dir",
metavar="DIR",
required=True,
help="Directory to read models")
parser.add_argument(
"--hyperparameters",
metavar="FILE.json",
help="Ligandome predictor hyperparameters")
parser.add_argument(
"--out-affinity-predictor-dir",
metavar="DIR",
required=True,
help="Directory to write refined models")
parser.add_argument(
"--out-ligandome-predictor-dir",
metavar="DIR",
required=True,
help="Directory to write ligandome predictors")
parser.add_argument(
"--verbosity",
type=int,
help="Keras verbosity. Default: %(default)s",
default=0)
add_local_parallelism_args(parser)
add_cluster_parallelism_args(parser)
def run(argv=sys.argv[1:]):
global GLOBAL_DATA
# On sigusr1 print stack trace
print("To show stack trace, run:\nkill -s USR1 %d" % os.getpid())
signal.signal(signal.SIGUSR1, lambda sig, frame: traceback.print_stack())
args = parser.parse_args(argv)
args.out_affinity_predictor_dir = os.path.abspath(
args.out_affinity_predictor_dir)
args.out_ligandome_predictor_dir = os.path.abspath(
args.out_ligandome_predictor_dir)
configure_logging(verbose=args.verbosity > 1)
multiallelic_df = pandas.read_csv(args.multiallelic_df)
print("Loaded multiallelic data: %s" % (str(multiallelic_df.shape)))
monoallelic_df = pandas.read_csv(args.monoallelic_data)
print("Loaded monoallelic data: %s" % (str(monoallelic_df.shape)))
input_predictor = Class1AffinityPredictor.load(
args.models_dir, optimization_level=0)
print("Loaded: %s" % input_predictor)
import ipdb ; ipdb.set_trace()
alleles = input_predictor.supported_alleles
(min_peptide_length, max_peptide_length) = (
input_predictor.supported_peptide_lengths)
metadata_dfs = {}
fold_cols = [c for c in df if c.startswith("fold_")]
num_folds = len(fold_cols)
if num_folds <= 1:
raise ValueError("Too few folds: ", num_folds)
df = df.loc[
(df.peptide.str.len() >= min_peptide_length) &
(df.peptide.str.len() <= max_peptide_length)
]
print("Subselected to %d-%dmers: %s" % (
min_peptide_length, max_peptide_length, str(df.shape)))
print("Num folds: ", num_folds, "fraction included:")
print(df[fold_cols].mean())
# Allele names in data are assumed to be already normalized.
df = df.loc[df.allele.isin(alleles)].dropna()
print("Subselected to supported alleles: %s" % str(df.shape))
metadata_dfs["model_selection_data"] = df
df["mass_spec"] = df.measurement_source.str.contains(
args.mass_spec_regex)
def make_train_peptide_hash(sub_df):
train_peptide_hash = hashlib.sha1()
for peptide in sorted(sub_df.peptide.values):
train_peptide_hash.update(peptide.encode())
return train_peptide_hash.hexdigest()
folds_to_predictors = dict(
(int(col.split("_")[-1]), (
[],
make_train_peptide_hash(df.loc[df[col] == 1])))
for col in fold_cols)
print(folds_to_predictors)
for model in input_predictor.class1_pan_allele_models:
training_info = model.fit_info[-1]['training_info']
fold_num = training_info['fold_num']
assert num_folds == training_info['num_folds']
(lst, hash) = folds_to_predictors[fold_num]
train_peptide_hash = training_info['train_peptide_hash']
numpy.testing.assert_equal(hash, train_peptide_hash)
lst.append(model)
work_items = []
for (fold_num, (models, _)) in folds_to_predictors.items():
work_items.append({
'fold_num': fold_num,
'models': models,
'min_models': args.min_models_per_fold,
'max_models': args.max_models_per_fold,
})
GLOBAL_DATA["data"] = df
GLOBAL_DATA["input_predictor"] = input_predictor
if not os.path.exists(args.out_models_dir):
print("Attempting to create directory: %s" % args.out_models_dir)
os.mkdir(args.out_models_dir)
print("Done.")
result_predictor = Class1AffinityPredictor(
allele_to_sequence=input_predictor.allele_to_sequence,
metadata_dataframes=metadata_dfs)
serial_run = not args.cluster_parallelism and args.num_jobs == 0
worker_pool = None
start = time.time()
if serial_run:
# Serial run
print("Running in serial.")
results = (model_select(**item) for item in work_items)
elif args.cluster_parallelism:
# Run using separate processes HPC cluster.
print("Running on cluster.")
results = cluster_results_from_args(
args,
work_function=model_select,
work_items=work_items,
constant_data=GLOBAL_DATA,
result_serialization_method="pickle")
else:
worker_pool = worker_pool_with_gpu_assignments_from_args(args)
print("Worker pool", worker_pool)
assert worker_pool is not None
print("Processing %d work items in parallel." % len(work_items))
assert not serial_run
# Parallel run
results = worker_pool.imap_unordered(
do_model_select_task,
work_items,
chunksize=1)
models_by_fold = {}
summary_dfs = []
for result in tqdm.tqdm(results, total=len(work_items)):
pprint(result)
fold_num = result['fold_num']
(all_models_for_fold, _) = folds_to_predictors[fold_num]
models = [
all_models_for_fold[i]
for i in result['selected_indices']
]
summary_df = result['summary'].copy()
summary_df.index = summary_df.index.map(
lambda idx: all_models_for_fold[idx])
summary_dfs.append(summary_df)
print("Selected %d models for fold %d: %s" % (
len(models), fold_num, result['selected_indices']))
models_by_fold[fold_num] = models
for model in models:
model.clear_allele_representations()
result_predictor.add_pan_allele_model(model)
summary_df = pandas.concat(summary_dfs, ignore_index=False)
summary_df["model_config"] = summary_df.index.map(lambda m: m.get_config())
result_predictor.metadata_dataframes["model_selection_summary"] = (
summary_df.reset_index(drop=True))
result_predictor.save(args.out_models_dir)
model_selection_time = time.time() - start
if worker_pool:
worker_pool.close()
worker_pool.join()
print("Model selection time %0.2f min." % (model_selection_time / 60.0))
print("Predictor [%d models] written to: %s" % (
len(result_predictor.neural_networks),
args.out_models_dir))
def do_model_select_task(item, constant_data=GLOBAL_DATA):
return model_select(constant_data=constant_data, **item)
def model_select(
fold_num, models, min_models, max_models, constant_data=GLOBAL_DATA):
"""
Model select for a fold.
Parameters
----------
fold_num : int
models : list of Class1NeuralNetwork
min_models : int
max_models : int
constant_data : dict
Returns
-------
dict with keys 'fold_num', 'selected_indices', 'summary'
"""
full_data = constant_data["data"]
input_predictor = constant_data["input_predictor"]
df = full_data.loc[
full_data["fold_%d" % fold_num] == 0
]
peptides = EncodableSequences.create(df.peptide.values)
alleles = AlleleEncoding(
df.allele.values,
borrow_from=input_predictor.master_allele_encoding)
predictions_df = df.copy()
for (i, model) in enumerate(models):
predictions_df[i] = from_ic50(model.predict(peptides, alleles))
actual = from_ic50(predictions_df.measurement_value)
selected = []
selected_score = 0
remaining_models = set(numpy.arange(len(models)))
individual_model_scores = {}
while remaining_models and len(selected) < max_models:
best_model = None
best_model_score = 0
for i in remaining_models:
possible_ensemble = list(selected) + [i]
predictions = predictions_df[possible_ensemble].mean(1)
mse_score = 1 - mse(
predictions,
actual,
inequalities=(
predictions_df.measurement_inequality
if 'measurement_inequality' in predictions_df.columns
else None),
affinities_are_already_01_transformed=True)
if mse_score >= best_model_score:
best_model = i
best_model_score = mse_score
if not selected:
# First iteration. Store individual model scores.
individual_model_scores[i] = mse_score
if len(selected) < min_models or best_model_score > selected_score:
selected_score = best_model_score
remaining_models.remove(best_model)
selected.append(best_model)
else:
break
assert selected
summary_df = pandas.Series(individual_model_scores)[
numpy.arange(len(models))
].to_frame()
summary_df.columns = ['mse_score']
return {
'fold_num': fold_num,
'selected_indices': selected,
'summary': summary_df, # indexed by model index
}
if __name__ == '__main__':
run()