Newer
Older
"""
Split training data into CV folds.
"""
import argparse
import sys
from os.path import abspath
import pandas
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from sklearn.model_selection import StratifiedKFold
parser = argparse.ArgumentParser(usage = __doc__)
parser.add_argument(
"input", metavar="INPUT.csv", help="Input CSV")
parser.add_argument(
"--folds", metavar="N", type=int, default=5)
parser.add_argument(
"--allele",
nargs="+",
help="Include only the specified allele(s)")
parser.add_argument(
"--min-measurements-per-allele",
type=int,
metavar="N",
help="Use only alleles with >=N measurements.")
parser.add_argument(
"--subsample",
type=int,
metavar="N",
help="Subsample to first N rows")
parser.add_argument(
"--random-state",
metavar="N",
type=int,
help="Specify an int for deterministic splitting")
parser.add_argument(
"--output-pattern-train",
default="./train.fold_{}.csv",
help="Pattern to use to generate output filename. Default: %(default)s")
parser.add_argument(
"--output-pattern-test",
default="./test.fold_{}.csv",
help="Pattern to use to generate output filename. Default: %(default)s")
def run(argv):
args = parser.parse_args(argv)
df = pandas.read_csv(args.input)
print("Loaded data with shape: %s" % str(df.shape))
df = df.ix[
(df.peptide.str.len() >= 8) & (df.peptide.str.len() <= 15)
]
print("Subselected to 8-15mers: %s" % (str(df.shape)))
allele_counts = df.allele.value_counts()
if args.allele:
alleles = args.allele
else:
alleles = list(
allele_counts.ix[
allele_counts > args.min_measurements_per_allele
print("Potentially subselected by allele to: %s" % str(df.shape))
print("Data has %d alleles: %s" % (
df.allele.nunique(), " ".join(df.allele.unique())))
print(df.head())
# Take log before taking median (in case of even number of samples).
df["measurement_value"] = numpy.log1p(df.measurement_value)
df = df.groupby(["allele", "peptide"]).measurement_value.median().reset_index()
df["measurement_value"] = numpy.expm1(df.measurement_value)
print("Took median for each duplicate peptide/allele pair: %s" % str(df.shape))
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
if args.subsample:
df = df.head(args.subsample)
print("Subsampled to: %s" % str(df.shape))
kf = StratifiedKFold(
n_splits=args.folds,
shuffle=True,
random_state=args.random_state)
# Stratify by both allele and binder vs. nonbinder.
df["key"] = [
"%s_%s" % (
row.allele,
"binder" if row.measurement_value < 500 else "nonbinder")
for (_, row) in df.iterrows()
]
for i, (train, test) in enumerate(kf.split(df, df.key)):
train_filename = args.output_pattern_train.format(i)
test_filename = args.output_pattern_test.format(i)
df.iloc[train].to_csv(train_filename, index=False)
print("Wrote: %s" % abspath(train_filename))
df.iloc[test].to_csv(test_filename, index=False)
print("Wrote: %s" % abspath(test_filename))
if __name__ == '__main__':
run(sys.argv[1:])