Newer
Older
import numpy
import pandas
from .encodable_sequences import EncodableSequences
from . import amino_acid
class AlleleEncoding(object):
def __init__(
self,
alleles,
allele_to_fixed_length_sequence):
A place to cache encodings for a (potentially large) sequence of alleles.
Parameters
----------
alleles : list of string
Allele names
allele_to_fixed_length_sequence : dict of str -> str
Allele name to fixed lengths sequence ("pseudosequence"), or a
pandas dataframe with allele names as the index and arbitrary values
to use for the encoding of those alleles
self.alleles = pandas.Series(alleles)
if isinstance(allele_to_fixed_length_sequence, dict):
self.allele_to_fixed_length_sequence = pandas.DataFrame(
index=allele_to_fixed_length_sequence)
self.allele_to_fixed_length_sequence["value"] = (
self.allele_to_fixed_length_sequence.index.map(
allele_to_fixed_length_sequence.get))
else:
assert isinstance(allele_to_fixed_length_sequence, pandas.DataFrame)
self.allele_to_fixed_length_sequence = allele_to_fixed_length_sequence
def fixed_length_vector_encoded_sequences(self, vector_encoding_name):
"""
Encode alleles.
Parameters
----------
vector_encoding_name : string
How to represent amino acids.
One of "BLOSUM62", "one-hot", etc. Full list of supported vector
encodings is given by available_vector_encodings() in amino_acid.
If a DataFrame was provided as `allele_to_fixed_length_sequence`
in the constructor, then those values will be used and this argument
will be ignored.
list of numpy arrays. Pass it to numpy.array to get an array with shape
(num sequences, sequence length, m) where m is
vector_encoding_length(vector_encoding_name)
The reason to return a list instead of an array is that the list can
use much less memory in the common case where many of the rows are
the same.
"""
cache_key = (
"fixed_length_vector_encoding",
vector_encoding_name)
if cache_key not in self.encoding_cache:
all_alleles = list(sorted(self.alleles.unique()))
allele_to_index = dict(
(allele, i)
for (i, allele) in enumerate(all_alleles))
indices = self.alleles.map(allele_to_index)
allele_to_fixed_length_sequence = self.allele_to_fixed_length_sequence.loc[
all_alleles
].copy()
if list(allele_to_fixed_length_sequence) == ["value"]:
# Pseudosequence
index_encoded_matrix = amino_acid.index_encoding(
allele_to_fixed_length_sequence["value"].values,
amino_acid.AMINO_ACID_INDEX)
vector_encoded = amino_acid.fixed_vectors_encoding(
index_encoded_matrix,
amino_acid.ENCODING_DATA_FRAMES[vector_encoding_name])
else:
# Raw values
vector_encoded = allele_to_fixed_length_sequence.values
result = [vector_encoded[i] for i in indices]
self.encoding_cache[cache_key] = result
return self.encoding_cache[cache_key]