Newer
Older
"""
Model select class1 single allele models.
"""
import argparse
import os
import signal
import sys
import time
import traceback
import random
import pandas
from scipy.stats import kendalltau
from mhcnames import normalize_allele_name
import tqdm # progress bar
tqdm.monitor_interval = 0 # see https://github.com/tqdm/tqdm/issues/481
from .class1_affinity_predictor import Class1AffinityPredictor
from .encodable_sequences import EncodableSequences
from .common import configure_logging, random_peptides
from .parallelism import worker_pool_with_gpu_assignments_from_args, add_worker_pool_args
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from .regression_target import from_ic50
# To avoid pickling large matrices to send to child processes when running in
# parallel, we use this global variable as a place to store data. Data that is
# stored here before creating the thread pool will be inherited to the child
# processes upon fork() call, allowing us to share large data with the workers
# via shared memory.
GLOBAL_DATA = {}
parser = argparse.ArgumentParser(usage=__doc__)
parser.add_argument(
"--data",
metavar="FILE.csv",
required=False,
help=(
"Model selection data CSV. Expected columns: "
"allele, peptide, measurement_value"))
parser.add_argument(
"--exclude-data",
metavar="FILE.csv",
required=False,
help=(
"Data to EXCLUDE from model selection. Useful to specify the original "
"training data used"))
parser.add_argument(
"--models-dir",
metavar="DIR",
required=True,
help="Directory to read models")
parser.add_argument(
"--out-models-dir",
metavar="DIR",
required=True,
help="Directory to write selected models")
parser.add_argument(
"--out-unselected-predictions",
metavar="FILE.csv",
help="Write predictions for validation data using unselected predictor to "
"FILE.csv")
parser.add_argument(
"--allele",
default=None,
nargs="+",
help="Alleles to select models for. If not specified, all alleles with "
"enough measurements will be used.")
parser.add_argument(
"--combined-min-models",
type=int,
default=8,
metavar="N",
help="Min number of models to select per allele when using combined selector")
parser.add_argument(
"--combined-max-models",
type=int,
default=1000,
metavar="N",
help="Max number of models to select per allele when using combined selector")
parser.add_argument(
"--combined-weights",
type=int,
nargs=3,
default=[1,1,1],
help="Weights for combined predictor in order: mass-spec MSE consensus")
parser.add_argument(
"--mass-spec-min-measurements",
type=int,
metavar="N",
default=50,
help="Min number of measurements required for an allele to use mass-spec model "
"selection")
parser.add_argument(
"--mass-spec-min-models",
type=int,
default=8,
metavar="N",
help="Min number of models to select per allele when using mass-spec selector")
parser.add_argument(
"--mass-spec-max-models",
type=int,
default=1000,
metavar="N",
help="Max number of models to select per allele when using mass-spec selector")
parser.add_argument(
"--mse-min-measurements",
type=int,
metavar="N",
default=50,
help="Min number of measurements required for an allele to use MSE model "
"selection")
type=int,
default=8,
metavar="N",
help="Min number of models to select per allele when using MSE selector")
help="Max number of models to select per allele when using MSE selector")
parser.add_argument(
"--scoring",
nargs="+",
choices=("combined-all", "mse", "mass-spec", "consensus"),
default=["mse", "consensus"],
help="Scoring procedures to use in order")
parser.add_argument(
"--consensus-min-models",
type=int,
default=8,
metavar="N",
help="Min number of models to select per allele when using consensus selector")
parser.add_argument(
"--consensus-max-models",
type=int,
metavar="N",
help="Max number of models to select per allele when using consensus selector")
parser.add_argument(
"--consensus-num-peptides-per-length",
type=int,
default=100000,
help="Num peptides per length to use for consensus scoring")
"--mass-spec-regex",
metavar="REGEX",
default="mass[- ]spec",
help="Regular expression for mass-spec data. Runs on measurement_source col."
"Default: %(default)s.")
parser.add_argument(
"--verbosity",
type=int,
help="Keras verbosity. Default: %(default)s",
default=0)
add_worker_pool_args(parser)
def run(argv=sys.argv[1:]):
global GLOBAL_DATA
# On sigusr1 print stack trace
print("To show stack trace, run:\nkill -s USR1 %d" % os.getpid())
signal.signal(signal.SIGUSR1, lambda sig, frame: traceback.print_stack())
args = parser.parse_args(argv)
args.out_models_dir = os.path.abspath(args.out_models_dir)
configure_logging(verbose=args.verbosity > 1)
input_predictor = Class1AffinityPredictor.load(args.models_dir)
print("Loaded: %s" % input_predictor)
if args.allele:
alleles = [normalize_allele_name(a) for a in args.allele]
else:
alleles = input_predictor.supported_alleles
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
if args.data:
df = pandas.read_csv(args.data)
print("Loaded data: %s" % (str(df.shape)))
df = df.ix[
(df.peptide.str.len() >= 8) & (df.peptide.str.len() <= 15)
]
print("Subselected to 8-15mers: %s" % (str(df.shape)))
# Allele names in data are assumed to be already normalized.
df = df.loc[df.allele.isin(alleles)].dropna()
print("Selected %d alleles: %s" % (len(alleles), ' '.join(alleles)))
if args.exclude_data:
exclude_df = pandas.read_csv(args.exclude_data)
metadata_dfs["model_selection_exclude"] = exclude_df
print("Loaded exclude data: %s" % (str(df.shape)))
df["_key"] = df.allele + "__" + df.peptide
exclude_df["_key"] = exclude_df.allele + "__" + exclude_df.peptide
df["_excluded"] = df._key.isin(exclude_df._key.unique())
print("Excluding measurements per allele (counts): ")
print(df.groupby("allele")._excluded.sum())
print("Excluding measurements per allele (fractions): ")
print(df.groupby("allele")._excluded.mean())
df = df.loc[~df._excluded]
del df["_excluded"]
del df["_key"]
print("Reduced data to: %s" % (str(df.shape)))
df["mass_spec"] = df.measurement_source.str.contains(
args.mass_spec_regex)
if args.out_unselected_predictions:
df["unselected_prediction"] = input_predictor.predict(
alleles=df.allele.values,
peptides=df.peptide.values)
df.to_csv(args.out_unselected_predictions)
print("Wrote: %s" % args.out_unselected_predictions)
selector_to_model_selection_kwargs = {}
def make_simple_selector(scoring):
model_selection_kwargs = {
'min_models': args.mse_min_models,
'max_models': args.mse_max_models,
}
selector = MSEModelSelector(
df=df,
predictor=input_predictor,
elif scoring == "mass-spec":
mass_spec_df = df.loc[df.mass_spec]
model_selection_kwargs = {
'min_models': args.mass_spec_min_models,
'max_models': args.mass_spec_max_models,
}
selector = MassSpecModelSelector(
df=mass_spec_df,
predictor=input_predictor,
min_measurements=args.mass_spec_min_measurements)
model_selection_kwargs = {
'min_models': args.consensus_min_models,
'max_models': args.consensus_max_models,
}
selector = ConsensusModelSelector(
predictor=input_predictor,
num_peptides_per_length=args.consensus_num_peptides_per_length)
else:
raise ValueError("Unsupported scoring method: %s" % scoring)
return (selector, model_selection_kwargs)
for scoring in args.scoring:
if scoring == "combined-all":
model_selection_kwargs = {
'min_models': args.combined_min_models,
'max_models': args.combined_max_models,
}
selector = CombinedModelSelector([
make_simple_selector("mass-spec")[0],
make_simple_selector("mse")[0],
make_simple_selector("consensus")[0],
], weights=args.combined_weights)
else:
(selector, model_selection_kwargs) = make_simple_selector(scoring)
selector_to_model_selection_kwargs[scoring] = model_selection_kwargs
print("Selectors for alleles:")
allele_to_selector = {}
for allele in alleles:
selector = None
for possible_selector in args.scoring:
if selectors[possible_selector].usable_for_allele(allele=allele):
selector = selectors[possible_selector]
print("%20s %s" % (allele, possible_selector))
break
if selector is None:
raise ValueError("No selectors usable for allele: %s" % allele)
allele_to_selector[allele] = selector
allele_to_model_selection_kwargs[allele] = (
selector_to_model_selection_kwargs[possible_selector])
GLOBAL_DATA["input_predictor"] = input_predictor
GLOBAL_DATA["allele_to_selector"] = allele_to_selector
GLOBAL_DATA["allele_to_model_selection_kwargs"] = allele_to_model_selection_kwargs
if not os.path.exists(args.out_models_dir):
print("Attempting to create directory: %s" % args.out_models_dir)
os.mkdir(args.out_models_dir)
print("Done.")
result_predictor = Class1AffinityPredictor(metadata_dataframes=metadata_dfs)
worker_pool = worker_pool_with_gpu_assignments_from_args(args)
if worker_pool is None:
# Serial run
print("Running in serial.")
results = (
model_select(allele) for allele in alleles)
else:
random.shuffle(alleles)
results = worker_pool.imap_unordered(
model_select,
alleles,
chunksize=1)
for result in tqdm.tqdm(results, total=len(alleles)):
model_selection_dfs.append(
result.metadata_dataframes['model_selection'])
result_predictor.merge_in_place([result])
model_selection_df = pandas.concat(model_selection_dfs, ignore_index=True)
model_selection_df["selector"] = model_selection_df.allele.map(
allele_to_selector)
result_predictor.metadata_dataframes["model_selection"] = model_selection_df
print("Done model selecting for %d alleles." % len(alleles))
result_predictor.save(args.out_models_dir)
model_selection_time = time.time() - start
if worker_pool:
worker_pool.close()
worker_pool.join()
print("Model selection time %0.2f min." % (model_selection_time / 60.0))
print("Predictor written to: %s" % args.out_models_dir)
def model_select(allele):
global GLOBAL_DATA
selector = GLOBAL_DATA["allele_to_selector"][allele]
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
model_selection_kwargs = GLOBAL_DATA[
"allele_to_model_selection_kwargs"
][allele]
return predictor.model_select(
score_function=selector.score_function(allele=allele),
alleles=[allele],
**model_selection_kwargs)
class CombinedModelSelector(object):
def __init__(self, model_selectors, weights=None):
if weights is None:
weights = numpy.ones(shape=(len(model_selectors),))
self.model_selectors = model_selectors
self.weights = weights
def usable_for_allele(self, allele):
return any(
selector.usable_for_allele(allele)
for selector in self.model_selectors)
def score_function(self, allele):
score_functions_and_weights = [
(selector.score_function(allele=allele), weight)
for (selector, weight) in zip(self.model_selectors, self.weights)
if selector.usable_for_allele(allele)
]
def score(predictor):
scores = numpy.array([
score_function(predictor) * weight
for (score_function, weight) in score_functions_and_weights
])
return scores.sum()
return score
class ConsensusModelSelector(object):
def __init__(
self,
predictor,
num_peptides_per_length=100000,
(min_length, max_length) = predictor.supported_peptide_lengths
peptides = []
for length in range(min_length, max_length + 1):
peptides.extend(
random_peptides(num_peptides_per_length, length=length))
self.peptides = EncodableSequences.create(peptides)
self.predictor = predictor
self.multiply_score_by_value = multiply_score_by_value
# Encode the peptides for each neural network, so the encoding
# becomes cached.
for network in predictor.neural_networks:
network.peptides_to_network_input(self.peptides)
def usable_for_allele(self, allele):
return True
full_ensemble_predictions = self.predictor.predict(
allele=allele,
peptides=self.peptides)
def score(predictor):
predictions = predictor.predict(
allele=allele,
peptides=self.peptides,
)
return (
kendalltau(predictions, full_ensemble_predictions).correlation *
self.multiply_score_by_value)
return score
class MSEModelSelector(object):
def __init__(
self,
df,
predictor,
min_measurements=1,
multiply_score_by_data_size=True):
self.df = df
self.predictor = predictor
self.min_measurements = min_measurements
self.multiply_score_by_data_size = multiply_score_by_data_size
def usable_for_allele(self, allele):
return (self.df.allele == allele).sum() >= self.min_measurements
sub_df = self.df.loc[self.df.allele == allele]
peptides = EncodableSequences.create(sub_df.peptide.values)
def score(predictor):
predictions = predictor.predict(
allele=allele,
peptides=peptides,
)
deviations = from_ic50(predictions) - from_ic50(
sub_df.measurement_value)
if 'measurement_inequality' in sub_df.columns:
# Must reverse meaning of inequality since we are working with
# transformed 0-1 values, which are anti-correlated with the ic50s.
# The measurement_inequality column is given in terms of ic50s.
deviations.loc[
(
(sub_df.measurement_inequality == "<") & (deviations > 0)) |
((sub_df.measurement_inequality == ">") & (deviations < 0))
] = 0.0
len(sub_df) if self.multiply_score_by_data_size else 1)
return score
class MassSpecModelSelector(object):
def __init__(
self,
df,
predictor,
decoys_per_length=5000,
min_measurements=100,
multiply_score_by_data_size=True):
(min_length, max_length) = predictor.supported_peptide_lengths
decoys = []
for length in range(min_length, max_length + 1):
decoys.extend(
random_peptides(decoys_per_length, length=length))
# Index is peptide, columns are alleles
hit_matrix = df.groupby(["peptide", "allele"]).measurement_value.count().unstack().fillna(0).astype(bool)
decoy_matrix = pandas.DataFrame(
index=decoys, columns=hit_matrix.columns, dtype=bool)
decoy_matrix[:] = False
full_matrix = pandas.concat([hit_matrix, decoy_matrix]).sample(frac=1.0)
self.df = full_matrix
self.predictor = predictor
self.min_measurements = min_measurements
self.multiply_score_by_data_size = multiply_score_by_data_size
self.peptides = EncodableSequences.create(full_matrix.index.values)
# Encode the peptides for each neural network, so the encoding
# becomes cached.
for network in predictor.neural_networks:
network.peptides_to_network_input(self.peptides)
@staticmethod
def ppv(y_true, predictions):
df = pandas.DataFrame({"prediction": predictions, "y_true": y_true})
return df.sort_values("prediction", ascending=True)[
: int(y_true.sum())
].y_true.mean()
def usable_for_allele(self, allele):
return allele in self.df.columns and (
self.df[allele].sum() >= self.min_measurements)
def score_function(self, allele):
def score(predictor):
predictions = predictor.predict(
allele=allele,
peptides=self.peptides,
)
self.df[allele].sum() if self.multiply_score_by_data_size else 1)
return score
if __name__ == '__main__':
run()