Skip to content
Snippets Groups Projects
run_mhcflurry.py 8.39 KiB
Newer Older
Tim O'Donnell's avatar
Tim O'Donnell committed
"""
"""
import argparse
import os
import signal
import sys
import time
import traceback
Timothy ODonnell's avatar
Timothy ODonnell committed
import math
Tim O'Donnell's avatar
Tim O'Donnell committed
from functools import partial

import numpy
import pandas

from mhcnames import normalize_allele_name
import tqdm  # progress bar
tqdm.monitor_interval = 0  # see https://github.com/tqdm/tqdm/issues/481

from mhcflurry.class1_affinity_predictor import Class1AffinityPredictor
from mhcflurry.common import configure_logging
Tim O'Donnell's avatar
Tim O'Donnell committed
from mhcflurry.local_parallelism import (
    add_local_parallelism_args,
    worker_pool_with_gpu_assignments_from_args,
    call_wrapped_kwargs)
from mhcflurry.cluster_parallelism import (
    add_cluster_parallelism_args,
    cluster_results_from_args)


# To avoid pickling large matrices to send to child processes when running in
# parallel, we use this global variable as a place to store data. Data that is
# stored here before creating the thread pool will be inherited to the child
# processes upon fork() call, allowing us to share large data with the workers
# via shared memory.
GLOBAL_DATA = {}

parser = argparse.ArgumentParser(usage=__doc__)

parser.add_argument(
    "input_peptides",
    metavar="CSV",
    help="CSV file with 'peptide' column")
parser.add_argument(
    "--models-dir",
    metavar="DIR",
    required=True,
    help="Directory to read MHCflurry models")
parser.add_argument(
    "--allele",
    default=None,
    required=True,
    nargs="+",
    help="Alleles to predict")
parser.add_argument(
    "--chunk-size",
    type=int,
Tim O'Donnell's avatar
Tim O'Donnell committed
    default=100000,
Tim O'Donnell's avatar
Tim O'Donnell committed
    help="Num peptides per job. Default: %(default)s")
parser.add_argument(
    "--batch-size",
    type=int,
    default=4096,
    help="Keras batch size for predictions. Default: %(default)s")
parser.add_argument(
    "--out",
    metavar="DIR",
    help="Write results to DIR")
parser.add_argument(
    "--verbosity",
    type=int,
    help="Keras verbosity. Default: %(default)s",
    default=0)
Tim O'Donnell's avatar
Tim O'Donnell committed
parser.add_argument(
    "--max-peptides",
    type=int,
    help="Max peptides to process. For debugging.",
    default=None)

Tim O'Donnell's avatar
Tim O'Donnell committed

add_local_parallelism_args(parser)
add_cluster_parallelism_args(parser)


def run(argv=sys.argv[1:]):
    global GLOBAL_DATA

    # On sigusr1 print stack trace
    print("To show stack trace, run:\nkill -s USR1 %d" % os.getpid())
    signal.signal(signal.SIGUSR1, lambda sig, frame: traceback.print_stack())

    args = parser.parse_args(argv)

    args.models_dir = os.path.abspath(args.models_dir)

    configure_logging(verbose=args.verbosity > 1)

    serial_run = not args.cluster_parallelism and args.num_jobs == 0

    # It's important that we don't trigger a Keras import here since that breaks
Tim O'Donnell's avatar
Tim O'Donnell committed
    # local parallelism (tensorflow backend). So we set optimization_level=0.
Tim O'Donnell's avatar
Tim O'Donnell committed
    predictor = Class1AffinityPredictor.load(
        args.models_dir,
Timothy ODonnell's avatar
Timothy ODonnell committed
        optimization_level=0,
Tim O'Donnell's avatar
Tim O'Donnell committed
    )

    alleles = [normalize_allele_name(a) for a in args.allele]
    alleles = sorted(set(alleles))

Tim O'Donnell's avatar
Tim O'Donnell committed
    peptides = pandas.read_csv(
        args.input_peptides, nrows=args.max_peptides).peptide.drop_duplicates()
Tim O'Donnell's avatar
Tim O'Donnell committed
    print("Filtering to valid peptides. Starting at: ", len(peptides))
Tim O'Donnell's avatar
Tim O'Donnell committed
    peptides = peptides[peptides.str.match("^[ACDEFGHIKLMNPQRSTVWY]+$")]
Tim O'Donnell's avatar
Tim O'Donnell committed
    print("Filtered to: ", len(peptides))
    peptides = peptides.unique()
Tim O'Donnell's avatar
Tim O'Donnell committed
    num_peptides = len(peptides)

    print("Predictions for %d alleles x %d peptides." % (
        len(alleles), num_peptides))

    if not os.path.exists(args.out):
        print("Creating", args.out)
        os.mkdir(args.out)

    # Write peptide and allele lists to out dir.
    out_peptides = os.path.abspath(os.path.join(args.out, "peptides.csv"))
    pandas.DataFrame({"peptide": peptides}).to_csv(out_peptides, index=False)
    print("Wrote: ", out_peptides)
    allele_to_file_path = dict(
        (allele, "%s.npz" % (allele.replace("*", ""))) for allele in alleles)
    out_alleles = os.path.abspath(os.path.join(args.out, "alleles.csv"))
    pandas.DataFrame({
        'allele': alleles,
        'path': [allele_to_file_path[allele] for allele in alleles],
    }).to_csv(out_alleles, index=False)
    print("Wrote: ", out_alleles)

Timothy ODonnell's avatar
Timothy ODonnell committed
    num_chunks = int(math.ceil(len(peptides) / args.chunk_size))
Tim O'Donnell's avatar
Tim O'Donnell committed
    print("Splitting peptides into %d chunks" % num_chunks)
    peptide_chunks = numpy.array_split(peptides, num_chunks)
Tim O'Donnell's avatar
Tim O'Donnell committed

    GLOBAL_DATA["predictor"] = predictor
    GLOBAL_DATA["args"] = {
        'verbose': args.verbosity > 0,
        'model_kwargs': {
Tim O'Donnell's avatar
Tim O'Donnell committed
            'batch_size': args.batch_size,
Tim O'Donnell's avatar
Tim O'Donnell committed
        }
    }

    work_items = []
Tim O'Donnell's avatar
Tim O'Donnell committed
    for (chunk_index, chunk_peptides) in enumerate(peptide_chunks):
        work_item = {
            'alleles': alleles,
            'chunk_index': chunk_index,
            'peptides': chunk_peptides,
        }
        work_items.append(work_item)
Tim O'Donnell's avatar
Tim O'Donnell committed
    print("Work items: ", len(work_items))

    worker_pool = None
    start = time.time()
    if serial_run:
        # Serial run
        print("Running in serial.")
        results = (
            do_predictions(**item) for item in work_items)
    elif args.cluster_parallelism:
        # Run using separate processes HPC cluster.
        print("Running on cluster.")
        results = cluster_results_from_args(
            args,
            work_function=do_predictions,
            work_items=work_items,
            constant_data=GLOBAL_DATA,
Tim O'Donnell's avatar
Tim O'Donnell committed
            input_serialization_method="dill",
            result_serialization_method="pickle",
Tim O'Donnell's avatar
Tim O'Donnell committed
            clear_constant_data=True)
    else:
        worker_pool = worker_pool_with_gpu_assignments_from_args(args)
        print("Worker pool", worker_pool)
        assert worker_pool is not None
        results = worker_pool.imap_unordered(
            partial(call_wrapped_kwargs, do_predictions),
            work_items,
            chunksize=1)

    allele_to_chunk_index_to_predictions = {}
    for allele in alleles:
        allele_to_chunk_index_to_predictions[allele] = {}

Tim O'Donnell's avatar
Tim O'Donnell committed
    for (chunk_index, allele_to_predictions) in tqdm.tqdm(
Tim O'Donnell's avatar
Tim O'Donnell committed
            results, total=len(work_items)):
Tim O'Donnell's avatar
Tim O'Donnell committed
        for (allele, predictions) in allele_to_predictions.items():
            chunk_index_to_predictions = allele_to_chunk_index_to_predictions[
                allele
            ]
            assert chunk_index not in chunk_index_to_predictions
            chunk_index_to_predictions[chunk_index] = predictions

            if len(allele_to_chunk_index_to_predictions[allele]) == num_chunks:
                chunk_predictions = sorted(chunk_index_to_predictions.items())
                assert [i for (i, _) in chunk_predictions] == list(
                    range(num_chunks))
                predictions = numpy.concatenate([
                    predictions for (_, predictions) in chunk_predictions
                ])
                assert len(predictions) == num_peptides
                out_path = os.path.join(
                    args.out, allele.replace("*", "")) + ".npz"
                out_path = os.path.abspath(out_path)
                numpy.savez(out_path, predictions)
                print("Wrote:", out_path)

                del allele_to_chunk_index_to_predictions[allele]
Tim O'Donnell's avatar
Tim O'Donnell committed

    assert not allele_to_chunk_index_to_predictions, (
        "Not all results written: ", allele_to_chunk_index_to_predictions)

    if worker_pool:
        worker_pool.close()
        worker_pool.join()

    prediction_time = time.time() - start
    print("Done generating predictions in %0.2f min." % (
        prediction_time / 60.0))


Tim O'Donnell's avatar
Tim O'Donnell committed
def do_predictions(chunk_index, peptides, alleles, constant_data=None):
Tim O'Donnell's avatar
Tim O'Donnell committed
    # This may run on the cluster in a way that misses all top level imports,
    # so we have to re-import everything here.
    import time
Tim O'Donnell's avatar
Tim O'Donnell committed
    from mhcflurry.encodable_sequences import EncodableSequences
Tim O'Donnell's avatar
Tim O'Donnell committed

Tim O'Donnell's avatar
Tim O'Donnell committed
    if constant_data is None:
        constant_data = GLOBAL_DATA

    predictor = constant_data['predictor']
    verbose = constant_data['args'].get("verbose", False)
    model_kwargs = constant_data['args'].get("model_kwargs", {})

Tim O'Donnell's avatar
Tim O'Donnell committed
    predictor.optimize(warn=False)  # since we loaded with optimization_level=0
Tim O'Donnell's avatar
Tim O'Donnell committed
    start = time.time()
Tim O'Donnell's avatar
Tim O'Donnell committed
    results = {}
    peptides = EncodableSequences.create(peptides)
Tim O'Donnell's avatar
Tim O'Donnell committed
    for (i, allele) in enumerate(alleles):
        print("Processing allele %d / %d: %0.2f sec elapsed" % (
            i + 1, len(alleles), time.time() - start))
Tim O'Donnell's avatar
Tim O'Donnell committed
        results[allele] = predictor.predict(
            peptides=peptides,
            allele=allele,
            throw=False,
            model_kwargs=model_kwargs).astype('float32')
Tim O'Donnell's avatar
Tim O'Donnell committed
    print("Done predicting in", time.time() - start, "sec")
Tim O'Donnell's avatar
Tim O'Donnell committed
    return (chunk_index, results)
Tim O'Donnell's avatar
Tim O'Donnell committed


if __name__ == '__main__':
    run()