Newer
Older
"""
"""
import argparse
import os
import signal
import sys
import time
import traceback
from functools import partial
import numpy
import pandas
from mhcnames import normalize_allele_name
import tqdm # progress bar
tqdm.monitor_interval = 0 # see https://github.com/tqdm/tqdm/issues/481
from mhcflurry.class1_affinity_predictor import Class1AffinityPredictor
from mhcflurry.common import configure_logging
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from mhcflurry.local_parallelism import (
add_local_parallelism_args,
worker_pool_with_gpu_assignments_from_args,
call_wrapped_kwargs)
from mhcflurry.cluster_parallelism import (
add_cluster_parallelism_args,
cluster_results_from_args)
# To avoid pickling large matrices to send to child processes when running in
# parallel, we use this global variable as a place to store data. Data that is
# stored here before creating the thread pool will be inherited to the child
# processes upon fork() call, allowing us to share large data with the workers
# via shared memory.
GLOBAL_DATA = {}
parser = argparse.ArgumentParser(usage=__doc__)
parser.add_argument(
"input_peptides",
metavar="CSV",
help="CSV file with 'peptide' column")
parser.add_argument(
"--models-dir",
metavar="DIR",
required=True,
help="Directory to read MHCflurry models")
parser.add_argument(
"--allele",
default=None,
required=True,
nargs="+",
help="Alleles to predict")
parser.add_argument(
"--chunk-size",
type=int,
help="Num peptides per job. Default: %(default)s")
parser.add_argument(
"--batch-size",
type=int,
default=4096,
help="Keras batch size for predictions. Default: %(default)s")
parser.add_argument(
"--out",
metavar="DIR",
help="Write results to DIR")
parser.add_argument(
"--verbosity",
type=int,
help="Keras verbosity. Default: %(default)s",
default=0)
parser.add_argument(
"--max-peptides",
type=int,
help="Max peptides to process. For debugging.",
default=None)
add_local_parallelism_args(parser)
add_cluster_parallelism_args(parser)
def run(argv=sys.argv[1:]):
global GLOBAL_DATA
# On sigusr1 print stack trace
print("To show stack trace, run:\nkill -s USR1 %d" % os.getpid())
signal.signal(signal.SIGUSR1, lambda sig, frame: traceback.print_stack())
args = parser.parse_args(argv)
args.models_dir = os.path.abspath(args.models_dir)
configure_logging(verbose=args.verbosity > 1)
serial_run = not args.cluster_parallelism and args.num_jobs == 0
# It's important that we don't trigger a Keras import here since that breaks
# local parallelism (tensorflow backend). So we set optimization_level=0.
)
alleles = [normalize_allele_name(a) for a in args.allele]
alleles = sorted(set(alleles))
peptides = pandas.read_csv(
args.input_peptides, nrows=args.max_peptides).peptide.drop_duplicates()
peptides = peptides[peptides.str.match("^[ACDEFGHIKLMNPQRSTVWY]+$")]
print("Filtered to: ", len(peptides))
peptides = peptides.unique()
num_peptides = len(peptides)
print("Predictions for %d alleles x %d peptides." % (
len(alleles), num_peptides))
if not os.path.exists(args.out):
print("Creating", args.out)
os.mkdir(args.out)
# Write peptide and allele lists to out dir.
out_peptides = os.path.abspath(os.path.join(args.out, "peptides.csv"))
pandas.DataFrame({"peptide": peptides}).to_csv(out_peptides, index=False)
print("Wrote: ", out_peptides)
allele_to_file_path = dict(
(allele, "%s.npz" % (allele.replace("*", ""))) for allele in alleles)
out_alleles = os.path.abspath(os.path.join(args.out, "alleles.csv"))
pandas.DataFrame({
'allele': alleles,
'path': [allele_to_file_path[allele] for allele in alleles],
}).to_csv(out_alleles, index=False)
print("Wrote: ", out_alleles)
print("Splitting peptides into %d chunks" % num_chunks)
peptide_chunks = numpy.array_split(peptides, num_chunks)
GLOBAL_DATA["predictor"] = predictor
GLOBAL_DATA["args"] = {
'verbose': args.verbosity > 0,
'model_kwargs': {
for (chunk_index, chunk_peptides) in enumerate(peptide_chunks):
work_item = {
'alleles': alleles,
'chunk_index': chunk_index,
'peptides': chunk_peptides,
}
work_items.append(work_item)
print("Work items: ", len(work_items))
worker_pool = None
start = time.time()
if serial_run:
# Serial run
print("Running in serial.")
results = (
do_predictions(**item) for item in work_items)
elif args.cluster_parallelism:
# Run using separate processes HPC cluster.
print("Running on cluster.")
results = cluster_results_from_args(
args,
work_function=do_predictions,
work_items=work_items,
constant_data=GLOBAL_DATA,
input_serialization_method="dill",
result_serialization_method="pickle",
clear_constant_data=True)
else:
worker_pool = worker_pool_with_gpu_assignments_from_args(args)
print("Worker pool", worker_pool)
assert worker_pool is not None
results = worker_pool.imap_unordered(
partial(call_wrapped_kwargs, do_predictions),
work_items,
chunksize=1)
allele_to_chunk_index_to_predictions = {}
for allele in alleles:
allele_to_chunk_index_to_predictions[allele] = {}
for (allele, predictions) in allele_to_predictions.items():
chunk_index_to_predictions = allele_to_chunk_index_to_predictions[
allele
]
assert chunk_index not in chunk_index_to_predictions
chunk_index_to_predictions[chunk_index] = predictions
if len(allele_to_chunk_index_to_predictions[allele]) == num_chunks:
chunk_predictions = sorted(chunk_index_to_predictions.items())
assert [i for (i, _) in chunk_predictions] == list(
range(num_chunks))
predictions = numpy.concatenate([
predictions for (_, predictions) in chunk_predictions
])
assert len(predictions) == num_peptides
out_path = os.path.join(
args.out, allele.replace("*", "")) + ".npz"
out_path = os.path.abspath(out_path)
numpy.savez(out_path, predictions)
print("Wrote:", out_path)
del allele_to_chunk_index_to_predictions[allele]
assert not allele_to_chunk_index_to_predictions, (
"Not all results written: ", allele_to_chunk_index_to_predictions)
if worker_pool:
worker_pool.close()
worker_pool.join()
prediction_time = time.time() - start
print("Done generating predictions in %0.2f min." % (
prediction_time / 60.0))
def do_predictions(chunk_index, peptides, alleles, constant_data=None):
# This may run on the cluster in a way that misses all top level imports,
# so we have to re-import everything here.
import time
if constant_data is None:
constant_data = GLOBAL_DATA
predictor = constant_data['predictor']
verbose = constant_data['args'].get("verbose", False)
model_kwargs = constant_data['args'].get("model_kwargs", {})
predictor.optimize(warn=False) # since we loaded with optimization_level=0
for (i, allele) in enumerate(alleles):
print("Processing allele %d / %d: %0.2f sec elapsed" % (
i + 1, len(alleles), time.time() - start))
results[allele] = predictor.predict(
peptides=peptides,
allele=allele,
throw=False,
model_kwargs=model_kwargs).astype('float32')