Skip to content
Snippets Groups Projects
readme.generated.rst 11.8 KiB
Newer Older
Tim O'Donnell's avatar
Tim O'Donnell committed
.. |Build Status| image:: https://travis-ci.org/hammerlab/mhcflurry.svg?branch=master
       :target: https://travis-ci.org/hammerlab/mhcflurry

.. |Coverage Status| image:: https://coveralls.io/repos/github/hammerlab/mhcflurry/badge.svg?branch=master
       :target: https://coveralls.io/github/hammerlab/mhcflurry?branch=master

mhcflurry
=========

Tim O'Donnell's avatar
Tim O'Donnell committed
Open source neural network models for peptide-MHC binding affinity predictionMHCflurry is a Python package for peptide/MHC I binding affinity
Tim O'Donnell's avatar
Tim O'Donnell committed
prediction. It provides competitive accuracy with a fast, documented,
open source implementation.

You can download pre-trained MHCflurry models fit to affinity
measurements deposited in IEDB. See the
Tim O'Donnell's avatar
Tim O'Donnell committed
"downloads_generation/models_class1" directory in the repository for
the workflow used to train these predictors. Users with their own data
can also fit their own MHCflurry models.
Tim O'Donnell's avatar
Tim O'Donnell committed

Currently only allele-specific prediction is implemented, in which
separate models are trained for each allele. The released models
therefore support a fixed set of common class I alleles for which
sufficient published training data is available.

MHCflurry supports Python versions 2.7 and 3.4+. It uses the Keras
neural network library via either the Tensorflow or Theano backends.
GPUs may optionally be used for a generally modest speed improvement.

If you find MHCflurry useful in your research please cite:

Tim O'Donnell's avatar
Tim O'Donnell committed
   O'Donnell, T. et al., 2017. MHCflurry: open-source class I MHC
   binding affinity prediction. bioRxiv. Available at:
   http://www.biorxiv.org/content/early/2017/08/09/174243.

Tim O'Donnell's avatar
Tim O'Donnell committed

Installation (pip)
Tim O'Donnell's avatar
Tim O'Donnell committed
******************
Tim O'Donnell's avatar
Tim O'Donnell committed

Install the package:

Tim O'Donnell's avatar
Tim O'Donnell committed
   pip install mhcflurry
Tim O'Donnell's avatar
Tim O'Donnell committed

Then download our datasets and trained models:

Tim O'Donnell's avatar
Tim O'Donnell committed
   mhcflurry-downloads fetch
Tim O'Donnell's avatar
Tim O'Donnell committed

From a checkout you can run the unit tests with:

Tim O'Donnell's avatar
Tim O'Donnell committed
   pip install nose
   nosetests .

Tim O'Donnell's avatar
Tim O'Donnell committed

Using conda
Tim O'Donnell's avatar
Tim O'Donnell committed
***********
Tim O'Donnell's avatar
Tim O'Donnell committed

You can alternatively get up and running with a conda environment as
follows. Some users have reported that this can avoid problems
installing tensorflow.

Tim O'Donnell's avatar
Tim O'Donnell committed
   conda create -q -n mhcflurry-env python=3.6 'tensorflow>=1.1.2'
   source activate mhcflurry-env
Tim O'Donnell's avatar
Tim O'Donnell committed

Then continue as above:

Tim O'Donnell's avatar
Tim O'Donnell committed
   pip install mhcflurry
   mhcflurry-downloads fetch

Tim O'Donnell's avatar
Tim O'Donnell committed

Command-line usage
Tim O'Donnell's avatar
Tim O'Donnell committed
==================

Tim O'Donnell's avatar
Tim O'Donnell committed

Downloading models
Tim O'Donnell's avatar
Tim O'Donnell committed
******************
Tim O'Donnell's avatar
Tim O'Donnell committed
Most users will use pre-trained MHCflurry models that we release.
These models are distributed separately from the source code and may
be downloaded with the following command:
Tim O'Donnell's avatar
Tim O'Donnell committed

We also release other "downloads," such as curated training data and
some experimental models. To see what you have downloaded, run:

Tim O'Donnell's avatar
Tim O'Donnell committed

Tim O'Donnell's avatar
Tim O'Donnell committed
mhcflurry-predict
Tim O'Donnell's avatar
Tim O'Donnell committed
*****************
Tim O'Donnell's avatar
Tim O'Donnell committed

The "mhcflurry-predict" command generates predictions from the
Tim O'Donnell's avatar
Tim O'Donnell committed
command-line. It defaults to using the pre-trained models you
downloaded above but this can be customized with the "--models"
argument. See "mhcflurry-predict -h" for details.

   $ mhcflurry-predict --alleles HLA-A0201 HLA-A0301 --peptides SIINFEKL SIINFEKD SIINFEKQ
   allele,peptide,mhcflurry_prediction,mhcflurry_prediction_low,mhcflurry_prediction_high
   HLA-A0201,SIINFEKL,5326.541919062165,3757.86675352994,7461.37693353508
   HLA-A0201,SIINFEKD,18763.70298522213,13140.82000240037,23269.82139560844
   HLA-A0201,SIINFEKQ,18620.10057358322,13096.425874678192,23223.148184869413
   HLA-A0301,SIINFEKL,24481.726678691946,21035.52779725433,27245.371837497867
   HLA-A0301,SIINFEKD,24687.529360239587,21582.590014592537,27749.39869616437
   HLA-A0301,SIINFEKQ,25923.062203902562,23522.5793450799,28079.456657427705

The predictions returned are affinities (KD) in nM. The
"prediction_low" and "prediction_high" fields give the 5-95 percentile
predictions across the models in the ensemble. The predictions above
were generated with MHCflurry 0.9.2.
Tim O'Donnell's avatar
Tim O'Donnell committed

Your exact predictions may vary slightly from these (up to about 1 nM)
depending on the Keras backend in use and other numerical details.
Tim O'Donnell's avatar
Tim O'Donnell committed
Different versions of MHCflurry can of course give results
considerably different from these.
Tim O'Donnell's avatar
Tim O'Donnell committed

You can also specify the input and output as CSV files. Run
"mhcflurry-predict -h" for details.

Tim O'Donnell's avatar
Tim O'Donnell committed

Tim O'Donnell's avatar
Tim O'Donnell committed
Fitting your own models
Tim O'Donnell's avatar
Tim O'Donnell committed
***********************

Tim O'Donnell's avatar
Tim O'Donnell committed

Library usage
Tim O'Donnell's avatar
Tim O'Donnell committed
=============
Tim O'Donnell's avatar
Tim O'Donnell committed
The MHCflurry Python API exposes additional options and features
beyond those supported by the commandline tools. This tutorial gives a
basic overview of the most important functionality. See the API
Documentation for further details.
Tim O'Donnell's avatar
Tim O'Donnell committed

The "Class1AffinityPredictor" class is the primary user-facing
interface.


Tim O'Donnell's avatar
Tim O'Donnell committed
   >>> import mhcflurry
   >>> print("MHCflurry version: %s" % (mhcflurry.__version__))
   MHCflurry version: 1.0.0
   >>> 
   >>> # Load downloaded predictor
   >>> predictor = mhcflurry.Class1AffinityPredictor.load()
   >>> print(predictor.supported_alleles)
   ['BoLA-6*13:01', 'Eqca-1*01:01', 'H-2-Db', 'H-2-Dd', 'H-2-Kb', 'H-2-Kd', 'H-2-Kk', 'H-2-Ld', 'HLA-A*01:01', 'HLA-A*02:01', 'HLA-A*02:02', 'HLA-A*02:03', 'HLA-A*02:05', 'HLA-A*02:06', 'HLA-A*02:07', 'HLA-A*02:11', 'HLA-A*02:12', 'HLA-A*02:16', 'HLA-A*02:17', 'HLA-A*02:19', 'HLA-A*02:50', 'HLA-A*03:01', 'HLA-A*11:01', 'HLA-A*23:01', 'HLA-A*24:01', 'HLA-A*24:02', 'HLA-A*24:03', 'HLA-A*25:01', 'HLA-A*26:01', 'HLA-A*26:02', 'HLA-A*26:03', 'HLA-A*29:02', 'HLA-A*30:01', 'HLA-A*30:02', 'HLA-A*31:01', 'HLA-A*32:01', 'HLA-A*32:07', 'HLA-A*33:01', 'HLA-A*66:01', 'HLA-A*68:01', 'HLA-A*68:02', 'HLA-A*68:23', 'HLA-A*69:01', 'HLA-A*80:01', 'HLA-B*07:01', 'HLA-B*07:02', 'HLA-B*08:01', 'HLA-B*08:02', 'HLA-B*08:03', 'HLA-B*14:02', 'HLA-B*15:01', 'HLA-B*15:02', 'HLA-B*15:03', 'HLA-B*15:09', 'HLA-B*15:17', 'HLA-B*15:42', 'HLA-B*18:01', 'HLA-B*27:01', 'HLA-B*27:03', 'HLA-B*27:04', 'HLA-B*27:05', 'HLA-B*27:06', 'HLA-B*27:20', 'HLA-B*35:01', 'HLA-B*35:03', 'HLA-B*35:08', 'HLA-B*37:01', 'HLA-B*38:01', 'HLA-B*39:01', 'HLA-B*40:01', 'HLA-B*40:02', 'HLA-B*42:01', 'HLA-B*44:01', 'HLA-B*44:02', 'HLA-B*44:03', 'HLA-B*45:01', 'HLA-B*45:06', 'HLA-B*46:01', 'HLA-B*48:01', 'HLA-B*51:01', 'HLA-B*53:01', 'HLA-B*54:01', 'HLA-B*57:01', 'HLA-B*58:01', 'HLA-B*73:01', 'HLA-B*83:01', 'HLA-C*03:03', 'HLA-C*03:04', 'HLA-C*04:01', 'HLA-C*05:01', 'HLA-C*06:02', 'HLA-C*07:01', 'HLA-C*07:02', 'HLA-C*08:02', 'HLA-C*12:03', 'HLA-C*14:02', 'HLA-C*15:02', 'Mamu-A*01:01', 'Mamu-A*02:01', 'Mamu-A*02:0102', 'Mamu-A*07:01', 'Mamu-A*07:0103', 'Mamu-A*11:01', 'Mamu-A*22:01', 'Mamu-A*26:01', 'Mamu-B*01:01', 'Mamu-B*03:01', 'Mamu-B*08:01', 'Mamu-B*10:01', 'Mamu-B*17:01', 'Mamu-B*17:04', 'Mamu-B*39:01', 'Mamu-B*52:01', 'Mamu-B*66:01', 'Mamu-B*83:01', 'Mamu-B*87:01', 'Patr-A*01:01', 'Patr-A*03:01', 'Patr-A*04:01', 'Patr-A*07:01', 'Patr-A*09:01', 'Patr-B*01:01', 'Patr-B*13:01', 'Patr-B*24:01']

   # coding: utf-8

   # In[22]:

   import pandas
   import numpy
   import seaborn
   import logging
   from matplotlib import pyplot

   import mhcflurry



   # # Download data and models

   # In[2]:

   get_ipython().system('mhcflurry-downloads fetch')


   # # Making predictions with `Class1AffinityPredictor`

   # In[3]:

   help(mhcflurry.Class1AffinityPredictor)


   # In[4]:

   downloaded_predictor = mhcflurry.Class1AffinityPredictor.load()


   # In[5]:

   downloaded_predictor.predict(allele="HLA-A0201", peptides=["SIINFEKL", "SIINFEQL"])


   # In[6]:
Tim O'Donnell's avatar
Tim O'Donnell committed
   downloaded_predictor.predict_to_dataframe(allele="HLA-A0201", peptides=["SIINFEKL", "SIINFEQL"])
Tim O'Donnell's avatar
Tim O'Donnell committed
   # In[7]:
Tim O'Donnell's avatar
Tim O'Donnell committed
   downloaded_predictor.predict_to_dataframe(alleles=["HLA-A0201", "HLA-B*57:01"], peptides=["SIINFEKL", "SIINFEQL"])
Tim O'Donnell's avatar
Tim O'Donnell committed
   # In[8]:
Tim O'Donnell's avatar
Tim O'Donnell committed
   downloaded_predictor.predict_to_dataframe(
       allele="HLA-A0201",
       peptides=["SIINFEKL", "SIINFEQL"],
       include_individual_model_predictions=True)
Tim O'Donnell's avatar
Tim O'Donnell committed
   # In[9]:
Tim O'Donnell's avatar
Tim O'Donnell committed
   downloaded_predictor.predict_to_dataframe(
       allele="HLA-A0201",
       peptides=["SIINFEKL", "SIINFEQL", "TAAAALANGGGGGGGG"],
       throw=False)  # Without throw=False, you'll get a ValueError for invalid peptides or alleles
Tim O'Donnell's avatar
Tim O'Donnell committed
   # # Instantiating a `Class1AffinityPredictor`  from a saved model on disk
Tim O'Donnell's avatar
Tim O'Donnell committed
   # In[10]:
Tim O'Donnell's avatar
Tim O'Donnell committed
   models_dir = mhcflurry.downloads.get_path("models_class1", "models")
   models_dir
Tim O'Donnell's avatar
Tim O'Donnell committed
   # In[11]:
Tim O'Donnell's avatar
Tim O'Donnell committed
   # This will be the same predictor we instantiated above. We're just being explicit about what models to load.
   downloaded_predictor = mhcflurry.Class1AffinityPredictor.load(models_dir)
   downloaded_predictor.predict(["SIINFEKL", "SIQNPEKP", "SYNFPEPI"], allele="HLA-A0301")
Tim O'Donnell's avatar
Tim O'Donnell committed
   # # Fit a model: first load some data
Tim O'Donnell's avatar
Tim O'Donnell committed
   # In[12]:
Tim O'Donnell's avatar
Tim O'Donnell committed
   # This is the data the downloaded models were trained on
   data_path = mhcflurry.downloads.get_path("data_curated", "curated_training_data.csv.bz2")
   data_path
Tim O'Donnell's avatar
Tim O'Donnell committed
   # In[13]:
Tim O'Donnell's avatar
Tim O'Donnell committed
   data_df = pandas.read_csv(data_path)
   data_df
Tim O'Donnell's avatar
Tim O'Donnell committed
   # # Fit a model: Low level `Class1NeuralNetwork` interface
Tim O'Donnell's avatar
Tim O'Donnell committed
   # In[14]:
Tim O'Donnell's avatar
Tim O'Donnell committed
   # We'll use mostly the default hyperparameters here. Could also specify them as kwargs.
   new_model = mhcflurry.Class1NeuralNetwork(layer_sizes=[16])
   new_model.hyperparameters
Tim O'Donnell's avatar
Tim O'Donnell committed
   # In[16]:
Tim O'Donnell's avatar
Tim O'Donnell committed
   train_data = data_df.loc[
       (data_df.allele == "HLA-B*57:01") &
       (data_df.peptide.str.len() >= 8) &
       (data_df.peptide.str.len() <= 15)
   ]
   get_ipython().magic('time new_model.fit(train_data.peptide.values, train_data.measurement_value.values)')
Tim O'Donnell's avatar
Tim O'Donnell committed
   # In[17]:
Tim O'Donnell's avatar
Tim O'Donnell committed
   new_model.predict(["SYNPEPII"])
Tim O'Donnell's avatar
Tim O'Donnell committed
   # # Fit a model: high level `Class1AffinityPredictor` interface
Tim O'Donnell's avatar
Tim O'Donnell committed
   # In[18]:
Tim O'Donnell's avatar
Tim O'Donnell committed
   affinity_predictor = mhcflurry.Class1AffinityPredictor()
Tim O'Donnell's avatar
Tim O'Donnell committed
   # This can be called any number of times, for example on different alleles, to build up the ensembles.
   affinity_predictor.fit_allele_specific_predictors(
       n_models=1,
       architecture_hyperparameters={"layer_sizes": [16], "max_epochs": 10},
       peptides=train_data.peptide.values,
       affinities=train_data.measurement_value.values,
       allele="HLA-B*57:01",
   )
Tim O'Donnell's avatar
Tim O'Donnell committed
   # In[19]:
Tim O'Donnell's avatar
Tim O'Donnell committed
   affinity_predictor.predict(["SYNPEPII"], allele="HLA-B*57:01")
Tim O'Donnell's avatar
Tim O'Donnell committed
   # # Save and restore the fit model
Tim O'Donnell's avatar
Tim O'Donnell committed
   # In[20]:
Tim O'Donnell's avatar
Tim O'Donnell committed
   get_ipython().system('mkdir /tmp/saved-affinity-predictor')
   affinity_predictor.save("/tmp/saved-affinity-predictor")
   get_ipython().system('ls /tmp/saved-affinity-predictor')
Tim O'Donnell's avatar
Tim O'Donnell committed
   # In[21]:
Tim O'Donnell's avatar
Tim O'Donnell committed
   affinity_predictor2 = mhcflurry.Class1AffinityPredictor.load("/tmp/saved-affinity-predictor")
   affinity_predictor2.predict(["SYNPEPII"], allele="HLA-B*57:01")
Tim O'Donnell's avatar
Tim O'Donnell committed


Supported alleles and peptide lengths
Tim O'Donnell's avatar
Tim O'Donnell committed
=====================================
Tim O'Donnell's avatar
Tim O'Donnell committed

Models released with the current version of MHCflurry (1.0.0) support
peptides of length 8-15 and the following 124 alleles:

Tim O'Donnell's avatar
Tim O'Donnell committed
   BoLA-6*13:01, Eqca-1*01:01, H-2-Db, H-2-Dd, H-2-Kb, H-2-Kd, H-2-Kk,
   H-2-Ld, HLA-A*01:01, HLA-A*02:01, HLA-A*02:02, HLA-A*02:03,
   HLA-A*02:05, HLA-A*02:06, HLA-A*02:07, HLA-A*02:11, HLA-A*02:12,
   HLA-A*02:16, HLA-A*02:17, HLA-A*02:19, HLA-A*02:50, HLA-A*03:01,
   HLA-A*11:01, HLA-A*23:01, HLA-A*24:01, HLA-A*24:02, HLA-A*24:03,
   HLA-A*25:01, HLA-A*26:01, HLA-A*26:02, HLA-A*26:03, HLA-A*29:02,
   HLA-A*30:01, HLA-A*30:02, HLA-A*31:01, HLA-A*32:01, HLA-A*32:07,
   HLA-A*33:01, HLA-A*66:01, HLA-A*68:01, HLA-A*68:02, HLA-A*68:23,
   HLA-A*69:01, HLA-A*80:01, HLA-B*07:01, HLA-B*07:02, HLA-B*08:01,
   HLA-B*08:02, HLA-B*08:03, HLA-B*14:02, HLA-B*15:01, HLA-B*15:02,
   HLA-B*15:03, HLA-B*15:09, HLA-B*15:17, HLA-B*15:42, HLA-B*18:01,
   HLA-B*27:01, HLA-B*27:03, HLA-B*27:04, HLA-B*27:05, HLA-B*27:06,
   HLA-B*27:20, HLA-B*35:01, HLA-B*35:03, HLA-B*35:08, HLA-B*37:01,
   HLA-B*38:01, HLA-B*39:01, HLA-B*40:01, HLA-B*40:02, HLA-B*42:01,
   HLA-B*44:01, HLA-B*44:02, HLA-B*44:03, HLA-B*45:01, HLA-B*45:06,
   HLA-B*46:01, HLA-B*48:01, HLA-B*51:01, HLA-B*53:01, HLA-B*54:01,
   HLA-B*57:01, HLA-B*58:01, HLA-B*73:01, HLA-B*83:01, HLA-C*03:03,
   HLA-C*03:04, HLA-C*04:01, HLA-C*05:01, HLA-C*06:02, HLA-C*07:01,
   HLA-C*07:02, HLA-C*08:02, HLA-C*12:03, HLA-C*14:02, HLA-C*15:02,
   Mamu-A*01:01, Mamu-A*02:01, Mamu-A*02:0102, Mamu-A*07:01,
   Mamu-A*07:0103, Mamu-A*11:01, Mamu-A*22:01, Mamu-A*26:01,
   Mamu-B*01:01, Mamu-B*03:01, Mamu-B*08:01, Mamu-B*10:01, Mamu-B*17:01,
   Mamu-B*17:04, Mamu-B*39:01, Mamu-B*52:01, Mamu-B*66:01, Mamu-B*83:01,
   Mamu-B*87:01, Patr-A*01:01, Patr-A*03:01, Patr-A*04:01, Patr-A*07:01,
   Patr-A*09:01, Patr-B*01:01, Patr-B*13:01, Patr-B*24:01