Newer
Older
"""
Train Class1 pan-allele models.
"""
import argparse
import os
import signal
import sys
import time
import traceback
import random
from functools import partial
import numpy
import pandas
import yaml
import tqdm # progress bar
tqdm.monitor_interval = 0 # see https://github.com/tqdm/tqdm/issues/481
from .class1_affinity_predictor import Class1AffinityPredictor
from .class1_neural_network import Class1NeuralNetwork
from .local_parallelism import (
add_local_parallelism_args,
worker_pool_with_gpu_assignments_from_args,
call_wrapped_kwargs)
from .cluster_parallelism import (
add_cluster_parallelism_args,
cluster_results_from_args)
from .allele_encoding import AlleleEncoding
from .encodable_sequences import EncodableSequences
# To avoid pickling large matrices to send to child processes when running in
# parallel, we use this global variable as a place to store data. Data that is
# stored here before creating the thread pool will be inherited to the child
# processes upon fork() call, allowing us to share large data with the workers
# via shared memory.
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# Note on parallelization:
# It seems essential currently (tensorflow==1.4.1) that no processes are forked
# after tensorflow has been used at all, which includes merely importing
# keras.backend. So we must make sure not to use tensorflow in the main process
# if we are running in parallel.
parser = argparse.ArgumentParser(usage=__doc__)
parser.add_argument(
"--data",
metavar="FILE.csv",
help=(
"Training data CSV. Expected columns: "
"allele, peptide, measurement_value"))
parser.add_argument(
"--pretrain-data",
metavar="FILE.csv",
help=(
"Pre-training data CSV. Expected columns: "
"allele, peptide, measurement_value"))
parser.add_argument(
"--out-models-dir",
metavar="DIR",
required=True,
help="Directory to write models and manifest")
parser.add_argument(
"--hyperparameters",
metavar="FILE.json",
help="JSON or YAML of hyperparameters")
parser.add_argument(
"--held-out-measurements-per-allele-fraction-and-max",
type=float,
metavar="X",
nargs=2,
default=[0.25, 100],
help="Fraction of measurements per allele to hold out, and maximum number")
parser.add_argument(
"--ignore-inequalities",
action="store_true",
default=False,
help="Do not use affinity value inequalities even when present in data")
parser.add_argument(
parser.add_argument(
"--num-replicates",
type=int,
metavar="N",
default=1,
help="Number of replicates per (architecture, fold) pair to train.")
parser.add_argument(
"--max-epochs",
type=int,
metavar="N",
help="Max training epochs. If specified here it overrides any 'max_epochs' "
"specified in the hyperparameters.")
parser.add_argument(
"--allele-sequences",
metavar="FILE.csv",
help="Allele sequences file.")
parser.add_argument(
"--verbosity",
type=int,
help="Keras verbosity. Default: %(default)s",
default=0)
parser.add_argument(
"--debug",
action="store_true",
default=False,
help="Launch python debugger on error")
parser.add_argument(
"--continue-incomplete",
action="store_true",
default=False,
help="Continue training models from an incomplete training run. If this is "
"specified then the only required argument is --out-models-dir")
parser.add_argument(
"--only-initialize",
action="store_true",
default=False,
help="Do not actually train models. The initialized run can be continued "
"later with --continue-incomplete.")
add_local_parallelism_args(parser)
add_cluster_parallelism_args(parser)
def assign_folds(df, num_folds, held_out_fraction, held_out_max):
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
"""
Split training data into multple test/train pairs, which we refer to as
folds. Note that a given data point may be assigned to multiple test or
train sets; these folds are NOT a non-overlapping partition as used in cross
validation.
A fold is defined by a boolean value for each data point, indicating whether
it is included in the training data for that fold. If it's not in the
training data, then it's in the test data.
Folds are balanced in terms of allele content.
Parameters
----------
df : pandas.DataFrame
training data
num_folds : int
held_out_fraction : float
Fraction of data to hold out as test data in each fold
held_out_max
For a given allele, do not hold out more than held_out_max number of
data points in any fold.
Returns
-------
pandas.DataFrame
index is same as df.index, columns are "fold_0", ... "fold_N" giving
whether the data point is in the training data for the fold
"""
result_df = pandas.DataFrame(index=df.index)
for fold in range(num_folds):
result_df["fold_%d" % fold] = True
for (allele, sub_df) in df.groupby("allele"):
medians = sub_df.groupby("peptide").measurement_value.median()
low_peptides = medians[medians < medians.median()].index.values
high_peptides = medians[medians >= medians.median()].index.values
held_out_count = int(
min(len(medians) * held_out_fraction, held_out_max))
held_out_peptides = set()
if held_out_count == 0:
pass
elif held_out_count < 2:
held_out_peptides = set(
medians.index.to_series().sample(n=held_out_count))
else:
held_out_low_count = min(
len(low_peptides),
int(held_out_count / 2))
held_out_high_count = min(
len(high_peptides),
held_out_count - held_out_low_count)
held_out_low = pandas.Series(low_peptides).sample(
n=held_out_low_count) if held_out_low_count else set()
held_out_high = pandas.Series(high_peptides).sample(
n=held_out_high_count) if held_out_high_count else set()
held_out_peptides = set(held_out_low).union(set(held_out_high))
result_df.loc[
sub_df.index[sub_df.peptide.isin(held_out_peptides)],
"fold_%d" % fold
] = False
print("Training points per fold")
print(result_df.sum())
print("Test points per fold")
print((~result_df).sum())
return result_df
def pretrain_data_iterator(
filename,
master_allele_encoding,
peptides_per_chunk=1024):
"""
Step through a CSV file giving predictions for a large number of peptides
(rows) and alleles (columns).
Parameters
----------
filename : string
master_allele_encoding : AlleleEncoding
peptides_per_chunk : int
Returns
-------
Generator of (AlleleEncoding, EncodableSequences, float affinities) tuples
"""
empty = pandas.read_csv(filename, index_col=0, nrows=0)
usable_alleles = [
c for c in empty.columns
if c in master_allele_encoding.allele_to_sequence
]
print("Using %d / %d alleles" % (len(usable_alleles), len(empty.columns)))
print("Skipped alleles: ", [
c for c in empty.columns
if c not in master_allele_encoding.allele_to_sequence
])
allele_encoding = AlleleEncoding(
numpy.tile(usable_alleles, peptides_per_chunk),
borrow_from=master_allele_encoding)
while True:
synthetic_iter = pandas.read_csv(
filename, index_col=0, chunksize=peptides_per_chunk)
for (k, df) in enumerate(synthetic_iter):
if len(df) != peptides_per_chunk:
continue
df = df[usable_alleles]
encodable_peptides = EncodableSequences(
numpy.repeat(
df.index.values,
len(usable_alleles)))
# On sigusr1 print stack trace
print("To show stack trace, run:\nkill -s USR1 %d" % os.getpid())
signal.signal(signal.SIGUSR1, lambda sig, frame: traceback.print_stack())
args = parser.parse_args(argv)
if args.debug:
try:
return main(args)
except Exception as e:
print(e)
import ipdb # pylint: disable=import-error
args.out_models_dir = os.path.abspath(args.out_models_dir)
configure_logging(verbose=args.verbosity > 1)
if not args.continue_incomplete:
initialize_training(args)
def initialize_training(args):
required_arguments = [
"data",
"out_models_dir",
"hyperparameters",
]
for arg in required_arguments:
if getattr(args, arg) is None:
parser.error("Missing required arg: %s" % arg)
hyperparameters_lst = yaml.load(open(args.hyperparameters))
assert isinstance(hyperparameters_lst, list)
print("Loaded hyperparameters list:")
pprint.pprint(hyperparameters_lst)
allele_sequences = pandas.read_csv(
args.allele_sequences, index_col=0).sequence
df = pandas.read_csv(args.data)
print("Loaded training data: %s" % (str(df.shape)))
df = df.loc[
(df.peptide.str.len() >= 8) & (df.peptide.str.len() <= 15)
]
print("Subselected to 8-15mers: %s" % (str(df.shape)))
df = df.loc[~df.measurement_value.isnull()]
print("Dropped NaNs: %s" % (str(df.shape)))
df = df.loc[df.allele.isin(allele_sequences.index)]
print("Subselected to alleles with sequences: %s" % (str(df.shape)))
print("Data inequalities:")
print(df.measurement_inequality.value_counts())
if args.ignore_inequalities and "measurement_inequality" in df.columns:
print("Dropping measurement_inequality column")
del df["measurement_inequality"]
# Allele names in data are assumed to be already normalized.
print("Training data: %s" % (str(df.shape)))
(held_out_fraction, held_out_max) = (
args.held_out_measurements_per_allele_fraction_and_max)
folds_df = assign_folds(
df=df,
held_out_fraction=held_out_fraction,
held_out_max=held_out_max)
allele_sequences_in_use = allele_sequences[
allele_sequences.index.isin(df.allele)
]
print("Will use %d / %d allele sequences" % (
# All alleles, not just those with training data.
full_allele_encoding = AlleleEncoding(
alleles=allele_sequences.index.values,
allele_to_sequence=allele_sequences.to_dict()
)
# Only alleles with training data. For efficiency we perform model training
# using only these alleles in the neural network embedding layer.
allele_encoding = AlleleEncoding(
alleles=allele_sequences_in_use.index.values,
allele_to_sequence=allele_sequences_in_use.to_dict())
if not os.path.exists(args.out_models_dir):
print("Attempting to create directory: %s" % args.out_models_dir)
os.mkdir(args.out_models_dir)
print("Done.")
predictor = Class1AffinityPredictor(
allele_to_sequence=allele_encoding.allele_to_sequence,
'train_data': pandas.merge(
df,
folds_df,
left_index=True,
right_index=True)
})
work_items = []
for (h, hyperparameters) in enumerate(hyperparameters_lst):
if 'n_models' in hyperparameters:
raise ValueError("n_models is unsupported")
if args.max_epochs:
hyperparameters['max_epochs'] = args.max_epochs
if hyperparameters.get("train_data", {}).get("pretrain", False):
if not args.pretrain_data:
raise ValueError("--pretrain-data is required")
for replicate in range(args.num_replicates):
work_dict = {
'work_item_name': str(uuid.uuid4()),
'architecture_num': h,
'num_architectures': len(hyperparameters_lst),
'fold_num': fold,
'replicate_num': replicate,
'num_replicates': args.num_replicates,
'hyperparameters': hyperparameters,
'pretrain_data_filename': args.pretrain_data,
}
work_items.append(work_dict)
training_init_info = {}
training_init_info["train_data"] = df
training_init_info["folds_df"] = folds_df
training_init_info["allele_encoding"] = allele_encoding
training_init_info["full_allele_encoding"] = full_allele_encoding
training_init_info["work_items"] = work_items
# Save empty predictor (for metadata)
predictor.save(args.out_models_dir)
# Write training_init_info.
with open(join(args.out_models_dir, "training_init_info.pkl"), "wb") as fd:
pickle.dump(training_init_info, fd, protocol=pickle.HIGHEST_PROTOCOL)
print("Done initializing training.")
def train_models(args):
global GLOBAL_DATA
predictor = Class1AffinityPredictor.load(args.out_models_dir)
print("Loaded predictor with %d networks" % len(predictor.neural_networks))
with open(join(args.out_models_dir, "training_init_info.pkl"), "rb") as fd:
GLOBAL_DATA.update(pickle.load(fd))
print("Loaded training init info:")
print(GLOBAL_DATA)
all_work_items = GLOBAL_DATA["work_items"]
complete_work_item_names = [
network.fit_info[-1]["training_info"]["work_item_name"] for network in
predictor.neural_networks
]
work_items = [
item for item in all_work_items
if item["work_item_name"] not in complete_work_item_names
]
print("Found %d work items, of which %d are incomplete and will run now." % (
len(all_work_items), len(work_items)))
# The estimated time to completion is more accurate if we randomize
# the order of the work.
random.shuffle(work_items)
for (work_item_num, item) in enumerate(work_items):
item['work_item_num'] = work_item_num
item['num_work_items'] = len(work_items)
item['progress_print_interval'] = 60.0 if not serial_run else 5.0
item['predictor'] = predictor if serial_run else None
item['save_to'] = args.out_models_dir if serial_run else None
item['verbose'] = args.verbosity
if args.pretrain_data:
item['pretrain_data_filename'] = args.pretrain_data
start = time.time()
worker_pool = None
if serial_run:
# Run in serial. Every worker is passed the same predictor,
# which it adds models to, so no merging is required. It also saves
# as it goes so no saving is required at the end.
print("Processing %d work items in serial." % len(work_items))
for _ in tqdm.trange(len(work_items)):
item = work_items.pop(0) # want to keep freeing up memory
work_predictor = train_model(**item)
assert work_predictor is predictor
assert not work_items
results_generator = None
elif args.cluster_parallelism:
# Run using separate processes HPC cluster.
results_generator = cluster_results_from_args(
args,
work_function=train_model,
work_items=work_items,
constant_data=GLOBAL_DATA,
result_serialization_method="save_predictor")
else:
worker_pool = worker_pool_with_gpu_assignments_from_args(args)
print("Worker pool", worker_pool)
print("Processing %d work items in parallel." % len(work_items))
assert not serial_run
results_generator = worker_pool.imap_unordered(
partial(call_wrapped_kwargs, train_model),
work_items,
chunksize=1)
for new_predictor in tqdm.tqdm(results_generator, total=len(work_items)):
save_start = time.time()
(new_model_name,) = predictor.merge_in_place([new_predictor])
predictor.save(
args.out_models_dir,
model_names_to_write=[new_model_name],
write_metadata=False)
print(
"Saved predictor (%d models total) with 1 new models"
"in %0.2f sec to %s" % (
len(predictor.neural_networks),
time.time() - save_start,
args.out_models_dir))
# We want the final predictor to support all alleles with sequences, not
# just those we actually used for model training.
predictor.allele_to_sequence = (
GLOBAL_DATA['full_allele_encoding'].allele_to_sequence)
predictor.clear_cache()
predictor.save(args.out_models_dir)
print("Done.")
print("*" * 30)
training_time = time.time() - start
print("Trained affinity predictor with %d networks in %0.2f min." % (
len(predictor.neural_networks), training_time / 60.0))
print("*" * 30)
if worker_pool:
worker_pool.close()
worker_pool.join()
print("Predictor written to: %s" % args.out_models_dir)
def train_model(
architecture_num,
num_architectures,
fold_num,
num_folds,
replicate_num,
num_replicates,
hyperparameters,
pretrain_data_filename,
df = constant_data["train_data"]
folds_df = constant_data["folds_df"]
allele_encoding = constant_data["allele_encoding"]
if predictor is None:
predictor = Class1AffinityPredictor(
allele_to_sequence=allele_encoding.allele_to_sequence)
numpy.testing.assert_equal(len(df), len(folds_df))
train_data = df.loc[
folds_df["fold_%d" % fold_num]
].sample(frac=1.0)
train_peptides = EncodableSequences(train_data.peptide.values)
train_alleles = AlleleEncoding(
train_data.allele.values, borrow_from=allele_encoding)
progress_preamble = (
"[%2d / %2d folds] "
"[%2d / %2d architectures] "
"[%4d / %4d replicates] " % (
fold_num + 1,
num_folds,
architecture_num + 1,
num_architectures,
replicate_num + 1,
num_replicates))
print("%s [pid %d]. Hyperparameters:" % (progress_preamble, os.getpid()))
pprint.pprint(hyperparameters)
train_params = dict(hyperparameters.get("train_data", {}))
def get_train_param(param, default):
if param in train_params:
result = train_params.pop(param)
if verbose:
print("Train param", param, "=", result)
else:
result = default
if verbose:
print("Train param", param, "=", result, "[default]")
return result
if get_train_param("pretrain", False):
pretrain_patience = get_train_param("pretrain_patience", 10)
pretrain_min_delta = get_train_param("pretrain_min_delta", 0.0)
pretrain_steps_per_epoch = get_train_param(
pretrain_max_epochs = get_train_param("pretrain_max_epochs", 1000)
pretrain_min_epochs = get_train_param("pretrain_min_epochs", 0)
pretrain_peptides_per_step = get_train_param(
"pretrain_peptides_per_step", 1024)
max_val_loss = get_train_param("pretrain_max_val_loss", None)
attempt = 0
while True:
attempt += 1
print("Pre-training attempt %d" % attempt)
if attempt > 10:
print("Too many pre-training attempts! Stopping pretraining.")
break
model = Class1NeuralNetwork(**hyperparameters)
assert model.network() is None
generator = pretrain_data_iterator(
pretrain_data_filename,
allele_encoding,
peptides_per_chunk=pretrain_peptides_per_step)
model.fit_generator(
generator,
validation_peptide_encoding=train_peptides,
validation_affinities=train_data.measurement_value.values,
validation_allele_encoding=train_alleles,
validation_inequalities=train_data.measurement_inequality.values,
patience=pretrain_patience,
min_delta=pretrain_min_delta,
steps_per_epoch=pretrain_steps_per_epoch,
epochs=pretrain_max_epochs,
progress_preamble=progress_preamble + "PRETRAIN",
progress_print_interval=progress_print_interval,
model.fit_info[-1].setdefault(
"training_info", {})["pretrain_attempt"] = attempt
final_val_loss = model.fit_info[-1]["val_loss"][-1]
if final_val_loss >= max_val_loss:
else:
print("Val loss %f < max val loss %f. Done pre-training." % (
# Use a smaller learning rate for training on real data
learning_rate = model.fit_info[-1]["learning_rate"]
model.hyperparameters['learning_rate'] = learning_rate / 10
peptides=train_peptides,
affinities=train_data.measurement_value.values,
inequalities=(
train_data.measurement_inequality.values
if "measurement_inequality" in train_data.columns else None),
progress_preamble=progress_preamble,
progress_print_interval=progress_print_interval,
verbose=verbose)
# Save model-specific training info
train_peptide_hash = hashlib.sha1()
for peptide in sorted(train_data.peptide.values):
"fold_num": fold_num,
"num_folds": num_folds,
"replicate_num": replicate_num,
"num_replicates": num_replicates,
"architecture_num": architecture_num,
"num_architectures": num_architectures,
"train_peptide_hash": train_peptide_hash.hexdigest(),
"work_item_name": work_item_name,
numpy.testing.assert_equal(
predictor.manifest_df.shape[0], len(predictor.class1_pan_allele_models))
numpy.testing.assert_equal(
predictor.manifest_df.shape[0], len(predictor.class1_pan_allele_models))
predictor.clear_cache()
model.clear_allele_representations()
model.update_network_description() # save weights and config
model._network = None # release tensorflow network
if __name__ == '__main__':