Newer
Older
"""
Model select class1 single allele models.
"""
import argparse
import os
import signal
import sys
import time
import traceback
import random
from functools import partial
import pandas
from scipy.stats import kendalltau
from mhcnames import normalize_allele_name
import tqdm # progress bar
tqdm.monitor_interval = 0 # see https://github.com/tqdm/tqdm/issues/481
from .class1_affinity_predictor import Class1AffinityPredictor
from .encodable_sequences import EncodableSequences
from .common import configure_logging, random_peptides
from .parallelism import worker_pool_with_gpu_assignments_from_args, add_worker_pool_args
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
from .regression_target import from_ic50
# To avoid pickling large matrices to send to child processes when running in
# parallel, we use this global variable as a place to store data. Data that is
# stored here before creating the thread pool will be inherited to the child
# processes upon fork() call, allowing us to share large data with the workers
# via shared memory.
GLOBAL_DATA = {}
parser = argparse.ArgumentParser(usage=__doc__)
parser.add_argument(
"--data",
metavar="FILE.csv",
required=False,
help=(
"Model selection data CSV. Expected columns: "
"allele, peptide, measurement_value"))
parser.add_argument(
"--exclude-data",
metavar="FILE.csv",
required=False,
help=(
"Data to EXCLUDE from model selection. Useful to specify the original "
"training data used"))
parser.add_argument(
"--models-dir",
metavar="DIR",
required=True,
help="Directory to read models")
parser.add_argument(
"--out-models-dir",
metavar="DIR",
required=True,
help="Directory to write selected models")
parser.add_argument(
"--allele",
default=None,
nargs="+",
help="Alleles to select models for. If not specified, all alleles with "
"enough measurements will be used.")
parser.add_argument(
"--min-measurements-per-allele",
type=int,
metavar="N",
default=50,
help="Min number of data points required for data-driven model selection")
parser.add_argument(
"--min-models",
type=int,
default=8,
metavar="N",
help="Min number of models to select per allele")
parser.add_argument(
"--max-models",
type=int,
default=15,
metavar="N",
help="Max number of models to select per allele")
parser.add_argument(
"--scoring",
nargs="+",
choices=("mse", "mass-spec", "consensus"),
default=["mse", "consensus"],
help="Scoring procedures to use in order")
parser.add_argument(
"--consensus-num-peptides-per-length",
type=int,
default=100000,
help="Num peptides per length to use for consensus scoring")
parser.add_argument(
"--verbosity",
type=int,
help="Keras verbosity. Default: %(default)s",
default=0)
add_worker_pool_args(parser)
def run(argv=sys.argv[1:]):
global GLOBAL_DATA
# On sigusr1 print stack trace
print("To show stack trace, run:\nkill -s USR1 %d" % os.getpid())
signal.signal(signal.SIGUSR1, lambda sig, frame: traceback.print_stack())
args = parser.parse_args(argv)
args.out_models_dir = os.path.abspath(args.out_models_dir)
configure_logging(verbose=args.verbosity > 1)
input_predictor = Class1AffinityPredictor.load(args.models_dir)
print("Loaded: %s" % input_predictor)
if args.allele:
alleles = [normalize_allele_name(a) for a in args.allele]
else:
alleles = input_predictor.supported_alleles
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
if args.data:
df = pandas.read_csv(args.data)
print("Loaded data: %s" % (str(df.shape)))
df = df.ix[
(df.peptide.str.len() >= 8) & (df.peptide.str.len() <= 15)
]
print("Subselected to 8-15mers: %s" % (str(df.shape)))
# Allele names in data are assumed to be already normalized.
df = df.loc[df.allele.isin(alleles)].dropna()
print("Selected %d alleles: %s" % (len(alleles), ' '.join(alleles)))
if args.exclude_data:
exclude_df = pandas.read_csv(args.exclude_data)
metadata_dfs["model_selection_exclude"] = exclude_df
print("Loaded exclude data: %s" % (str(df.shape)))
df["_key"] = df.allele + "__" + df.peptide
exclude_df["_key"] = exclude_df.allele + "__" + exclude_df.peptide
df["_excluded"] = df._key.isin(exclude_df._key.unique())
print("Excluding measurements per allele (counts): ")
print(df.groupby("allele")._excluded.sum())
print("Excluding measurements per allele (fractions): ")
print(df.groupby("allele")._excluded.mean())
df = df.loc[~df._excluded]
print("Reduced data to: %s" % (str(df.shape)))
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
else:
df = None
model_selection_kwargs = {
'min_models': args.min_models,
'max_models': args.max_models,
}
selectors = {}
for scoring in args.scoring:
if scoring == "mse":
selector = MSEModelSelector(
df=df,
predictor=input_predictor,
min_measurements=args.min_measurements_per_allele,
model_selection_kwargs=model_selection_kwargs)
elif scoring == "consensus":
selector = ConsensusModelSelector(
predictor=input_predictor,
num_peptides_per_length=args.consensus_num_peptides_per_length,
model_selection_kwargs=model_selection_kwargs)
selectors[scoring] = selector
print("Selectors for alleles:")
allele_to_selector = {}
for allele in alleles:
selector = None
for possible_selector in args.scoring:
if selectors[possible_selector].usable_for_allele(allele=allele):
selector = selectors[possible_selector]
print("%20s %s" % (allele, possible_selector))
break
if selector is None:
raise ValueError("No selectors usable for allele: %s" % allele)
allele_to_selector[allele] = selector
GLOBAL_DATA["allele_to_selector"] = allele_to_selector
if not os.path.exists(args.out_models_dir):
print("Attempting to create directory: %s" % args.out_models_dir)
os.mkdir(args.out_models_dir)
print("Done.")
result_predictor = Class1AffinityPredictor(metadata_dataframes=metadata_dfs)
worker_pool = worker_pool_with_gpu_assignments_from_args(args)
if worker_pool is None:
# Serial run
print("Running in serial.")
results = (
model_select(allele) for allele in alleles)
else:
random.shuffle(alleles)
results = worker_pool.imap_unordered(
model_select,
alleles,
chunksize=1)
for result in tqdm.tqdm(results, total=len(alleles)):
result_predictor.merge_in_place([result])
print("Done model selecting for %d alleles." % len(alleles))
result_predictor.save(args.out_models_dir)
model_selection_time = time.time() - start
if worker_pool:
worker_pool.close()
worker_pool.join()
print("Model selection time %0.2f min." % (model_selection_time / 60.0))
print("Predictor written to: %s" % args.out_models_dir)
def model_select(allele):
global GLOBAL_DATA
selector = GLOBAL_DATA["allele_to_selector"][allele]
return selector.select(allele)
class ConsensusModelSelector(object):
def __init__(
self,
predictor,
num_peptides_per_length=100000,
model_selection_kwargs={}):
(min_length, max_length) = predictor.supported_peptide_lengths
peptides = []
for length in range(min_length, max_length + 1):
peptides.extend(
random_peptides(num_peptides_per_length, length=length))
self.peptides = EncodableSequences.create(peptides)
self.predictor = predictor
self.model_selection_kwargs = model_selection_kwargs
# Encode the peptides for each neural network, so the encoding
# becomes cached.
for network in predictor.neural_networks:
network.peptides_to_network_input(self.peptides)
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
def usable_for_allele(self, allele):
return True
def score_function(self, allele, ensemble_predictions, predictor):
predictions = predictor.predict(
allele=allele,
peptides=self.peptides,
)
return kendalltau(predictions, ensemble_predictions).correlation
def select(self, allele):
full_ensemble_predictions = self.predictor.predict(
allele=allele,
peptides=self.peptides)
return self.predictor.model_select(
score_function=partial(
self.score_function, allele, full_ensemble_predictions),
alleles=[allele],
**self.model_selection_kwargs
)
class MSEModelSelector(object):
def __init__(
self,
df,
predictor,
model_selection_kwargs={},
min_measurements=1):
self.df = df
self.predictor = predictor
self.model_selection_kwargs = model_selection_kwargs
self.min_measurements = min_measurements
def usable_for_allele(self, allele):
return (self.df.allele == allele).sum() >= self.min_measurements
@staticmethod
def score_function(allele, sub_df, peptides, predictor):
predictions = predictor.predict(
allele=allele,
peptides=peptides,
)
deviations = from_ic50(predictions) - from_ic50(sub_df.measurement_value)
if 'measurement_inequality' in sub_df.columns:
# Must reverse meaning of inequality since we are working with
# transformed 0-1 values, which are anti-correlated with the ic50s.
# The measurement_inequality column is given in terms of ic50s.
deviations.loc[
((sub_df.measurement_inequality == "<") & (deviations > 0)) |
((sub_df.measurement_inequality == ">") & (deviations < 0))
] = 0.0
return -1 * (deviations**2).mean()
def select(self, allele):
sub_df = self.df.loc[self.df.allele == allele]
peptides = EncodableSequences.create(sub_df.peptide.values)
return self.predictor.model_select(
score_function=partial(
self.score_function, allele, sub_df, peptides),
alleles=[allele],
**self.model_selection_kwargs
)
if __name__ == '__main__':
run()