Newer
Older
'''
Scan protein sequences using the MHCflurry presentation predictor.
By default, sub-sequences (peptides) with affinity percentile ranks less than
2.0 are returned. You can also specify --results-all to return predictions for
all peptides, or --results-best to return the top peptide for each sequence.
Examples:
Scan a set of sequences in a FASTA file for binders to any alleles in a MHC I
genotype:
$ mhcflurry-predict-scan \
test/data/example.fasta \
--alleles HLA-A*02:01,HLA-A*03:01,HLA-B*57:01,HLA-B*45:01,HLA-C*02:01,HLA-C*07:02
Instead of a FASTA, you can also pass a CSV that has "sequence_id" and "sequence"
columns.
You can also specify multiple MHC I genotypes to scan as space-separated
arguments to the --alleles option:
$ mhcflurry-predict-scan \
test/data/example.fasta \
--alleles \
HLA-A*02:01,HLA-A*03:01,HLA-B*57:01,HLA-B*45:01,HLA-C*02:02,HLA-C*07:02 \
HLA-A*01:01,HLA-A*02:06,HLA-B*44:02,HLA-B*07:02,HLA-C*01:02,HLA-C*03:01
If `--out` is not specified, results are written to standard out.
You can also specify sequences on the commandline:
mhcflurry-predict-scan \
--sequences MGYINVFAFPFTIYSLLLCRMNSRNYIAQVDVVNFNLT \
--alleles HLA-A*02:01,HLA-A*03:01,HLA-B*57:01,HLA-B*45:01,HLA-C*02:02,HLA-C*07:02
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
'''
from __future__ import (
print_function,
division,
absolute_import,
)
import sys
import argparse
import itertools
import logging
import os
import pandas
from .downloads import get_default_class1_presentation_models_dir
from .class1_presentation_predictor import Class1PresentationPredictor
from .fasta import read_fasta_to_dataframe
from .version import __version__
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter,
add_help=False)
helper_args = parser.add_argument_group(title="Help")
helper_args.add_argument(
"-h", "--help",
action="help",
help="Show this help message and exit"
)
helper_args.add_argument(
"--list-supported-alleles",
action="store_true",
default=False,
help="Print the list of supported alleles and exits"
)
helper_args.add_argument(
"--list-supported-peptide-lengths",
action="store_true",
default=False,
help="Print the list of supported peptide lengths and exits"
)
helper_args.add_argument(
"--version",
action="version",
version="mhcflurry %s" % __version__,
)
input_args = parser.add_argument_group(title="Input options")
input_args.add_argument(
"input",
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
nargs="?",
help="Input CSV or FASTA")
input_args.add_argument(
"--input-format",
choices=("guess", "csv", "fasta"),
default="guess",
help="Format of input file. By default, it is guessed from the file "
"extension.")
input_args.add_argument(
"--alleles",
metavar="ALLELE",
nargs="+",
help="Alleles to predict")
input_args.add_argument(
"--sequences",
metavar="SEQ",
nargs="+",
help="Sequences to predict (exclusive with passing an input file)")
input_args.add_argument(
"--sequence-id-column",
metavar="NAME",
default="sequence_id",
help="Input CSV column name for sequence IDs. Default: '%(default)s'")
input_args.add_argument(
"--sequence-column",
metavar="NAME",
default="sequence",
help="Input CSV column name for sequences. Default: '%(default)s'")
input_args.add_argument(
"--no-throw",
action="store_true",
default=False,
help="Return NaNs for unsupported alleles or peptides instead of raising")
results_args = parser.add_argument_group(title="Result options")
results_args.add_argument(
"--peptide-lengths",
type=int,
nargs="+",
default=[8, 9, 10, 11],
help="Peptide lengths to consider. Default: %(default)s.")
comparison_quantities = [
"presentation_score",
"processing_score",
"affinity",
"affinity_percentile",
]
results_args.add_argument(
"--results-all",
action="store_true",
default=False,
help="Return results for all peptides regardless of affinity, etc.")
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
results_args.add_argument(
"--results-best",
choices=comparison_quantities,
help="Take the top result for each sequence according to the specified "
"predicted quantity")
results_args.add_argument(
"--results-filtered",
choices=comparison_quantities,
help="Filter results by the specified quantity.")
results_args.add_argument(
"--threshold-presentation-score",
type=float,
default=0.7,
help="Threshold if filtering by presentation score. Default: %(default)s")
results_args.add_argument(
"--threshold-processing-score",
type=float,
default=0.5,
help="Threshold if filtering by processing score. Default: %(default)s")
results_args.add_argument(
"--threshold-affinity",
type=float,
default=500,
help="Threshold if filtering by affinity. Default: %(default)s")
results_args.add_argument(
"--threshold-affinity-percentile",
type=float,
default=2.0,
help="Threshold if filtering by affinity percentile. Default: %(default)s")
output_args = parser.add_argument_group(title="Output options")
output_args.add_argument(
"--out",
metavar="OUTPUT.csv",
help="Output CSV")
output_args.add_argument(
"--output-delimiter",
metavar="CHAR",
default=",",
help="Delimiter character for results. Default: '%(default)s'")
output_args.add_argument(
"--no-affinity-percentile",
default=False,
action="store_true",
help="Do not include affinity percentile rank")
model_args = parser.add_argument_group(title="Model options")
model_args.add_argument(
"--models",
metavar="DIR",
default=None,
help="Directory containing presentation models."
"Default: %s" % get_default_class1_presentation_models_dir(
test_exists=False))
model_args.add_argument(
"--no-flanking",
action="store_true",
default=False,
help="Do not use flanking sequence information in predictions")
def run(argv=sys.argv[1:]):
logging.getLogger('tensorflow').disabled = True
if not argv:
parser.print_help()
parser.exit(1)
args = parser.parse_args(argv)
# It's hard to pass a tab in a shell, so we correct a common error:
if args.output_delimiter == "\\t":
args.output_delimiter = "\t"
result_args = {
"all": args.results_all,
"best": args.results_best,
"filtered": args.results_filtered,
}
if all([not bool(arg) for arg in result_args.values()]):
result_args["filtered"] = "affinity_percentile"
if sum([bool(arg) for arg in result_args.values()]) > 1:
parser.error(
"Specify at most one of --results-all, --results-best, "
"--results-filtered")
(result,) = [key for (key, value) in result_args.items() if value]
result_comparison_quantity = (
None if result == "all" else result_args[result])
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
result_filter_value = None if result != "filtered" else {
"presentation_score": args.threshold_presentation_score,
"processing_score": args.threshold_processing_score,
"affinity": args.threshold_affinity,
"affinity_percentile": args.threshold_affinity_percentile,
}[result_comparison_quantity]
models_dir = args.models
if models_dir is None:
# The reason we set the default here instead of in the argument parser
# is that we want to test_exists at this point, so the user gets a
# message instructing them to download the models if needed.
models_dir = get_default_class1_presentation_models_dir(test_exists=True)
predictor = Class1PresentationPredictor.load(models_dir)
if args.list_supported_alleles:
print("\n".join(predictor.supported_alleles))
return
if args.list_supported_peptide_lengths:
min_len, max_len = predictor.supported_peptide_lengths
print("\n".join([str(l) for l in range(min_len, max_len+1)]))
return
if args.input:
if args.sequences:
parser.error(
"If an input file is specified, do not specify --sequences")
input_format = args.input_format
if input_format == "guess":
extension = args.input.lower().split(".")[-1]
if extension in ["gz", "bzip2"]:
extension = args.input.lower().split(".")[-2]
if extension == "csv":
input_format = "csv"
elif extension in ["fasta", "fa"]:
input_format = "fasta"
else:
parser.error(
"Couldn't guess input format from file extension: %s\n"
"Pass the --input-format argument to specify if it is a "
"CSV or fasta file" % args.input)
print("Guessed input file format:", input_format)
if input_format == "csv":
df = pandas.read_csv(args.input)
print("Read input CSV with %d rows, columns are: %s" % (
len(df), ", ".join(df.columns)))
for col in [args.sequence_column,]:
if col not in df.columns:
raise ValueError(
"No such column '%s' in CSV. Columns are: %s" % (
col, ", ".join(["'%s'" % c for c in df.columns])))
elif input_format == "fasta":
df = read_fasta_to_dataframe(args.input)
print("Read input fasta with %d sequences" % len(df))
print(df)
else:
raise ValueError("Unsupported input format", input_format)
else:
if not args.sequences:
parser.error(
"Specify either an input file or the --sequences argument")
df = pandas.DataFrame({
args.sequence_column: args.sequences,
})
if args.sequence_id_column not in df:
df[args.sequence_id_column] = "sequence_" + df.index.astype(str)
df = df.set_index(args.sequence_id_column)
genotypes = pandas.Series(args.alleles).str.split(r"[,\s]+")
genotypes.index = genotypes.index.map(lambda i: "genotype_%02d" % i)
result_df = predictor.predict_sequences(
sequences=df[args.sequence_column].to_dict(),
alleles=genotypes.to_dict(),
result=result,
comparison_quantity=result_comparison_quantity,
filter_value=result_filter_value,
peptide_lengths=args.peptide_lengths,
use_flanks=not args.no_flanking,
include_affinity_percentile=not args.no_affinity_percentile,
throw=not args.no_throw)
if args.out:
result_df.to_csv(args.out, index=False, sep=args.output_delimiter)
print("Wrote: %s" % args.out)
else:
result_df.to_csv(sys.stdout, index=False, sep=args.output_delimiter)