Skip to content
Snippets Groups Projects
common.py 6.17 KiB
Newer Older
# Copyright (c) 2016. Mount Sinai School of Medicine
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function, division, absolute_import
import itertools
Tim O'Donnell's avatar
Tim O'Donnell committed
import collections
import logging
import hashlib
import time
import sys
from os import environ
Tim O'Donnell's avatar
Tim O'Donnell committed
import numpy
Tim O'Donnell's avatar
Tim O'Donnell committed
from . import amino_acid

def all_combinations(**dict_of_lists):
    """
    Iterator that generates all combinations of parameters given in the
    kwargs dictionary which is expected to map argument names to lists
    of possible values.
    """
    arg_names = dict_of_lists.keys()
    value_lists = dict_of_lists.values()
    for combination_of_values in itertools.product(*value_lists):
        yield dict(zip(arg_names, combination_of_values))
def dataframe_cryptographic_hash(df):
    """
    Return a cryptographic (i.e. collisions extremely unlikely) hash
    of a dataframe. Suitible for using as a cache key.

    Parameters
    -----------
    df : pandas.DataFrame or pandas.Series

    Returns
    -----------
    string
    """
    start = time.time()
    result = hashlib.sha1(df.to_msgpack()).hexdigest()
    logging.info(
        "Generated dataframe hash in %0.2f sec" % (time.time() - start))
    return result


def freeze_object(o):
    """
    Recursively convert nested dicts and lists into frozensets and tuples.
    """
    if isinstance(o, dict):
        return frozenset({k: freeze_object(v) for k, v in o.items()}.items())
    if isinstance(o, list):
        return tuple(freeze_object(v) for v in o)
    return o


def configure_logging(verbose=False):
    level = logging.DEBUG if verbose else logging.INFO
    logging.basicConfig(
        format="%(asctime)s.%(msecs)d %(levelname)s %(module)s - %(funcName)s:"
        " %(message)s",
        datefmt="%Y-%m-%d %H:%M:%S",
        stream=sys.stderr,
        level=level)


def describe_nulls(df, related_df_with_same_index_to_describe=None):
    """
    Return a string describing the positions of any nan or inf values
    in a dataframe.

    If related_df_with_same_index_to_describe is specified, it should be
    a dataframe with the same index as df. Positions corresponding to
    where df has null values will also be printed from this dataframe.
    """
    if isinstance(df, pandas.Series):
        df = df.to_frame()
    with pandas.option_context('mode.use_inf_as_null', True):
        null_counts_by_col = pandas.isnull(df).sum(axis=0)
        null_rows = pandas.isnull(df).sum(axis=1) > 0
        return (
            "Columns with nulls:\n%s, related rows with nulls:\n%s, "
            "full df:\n%s" % (
                null_counts_by_col.index[null_counts_by_col > 0],
                related_df_with_same_index_to_describe.ix[null_rows]
                if related_df_with_same_index_to_describe is not None
                else "(n/a)",
                str(df.ix[null_rows])))


def raise_or_debug(exception):
    """
Tim O'Donnell's avatar
Tim O'Donnell committed
    Raise the exception unless the MHCFLURRY_DEBUG environment variable is set,
    in which case drop into ipython debugger (ipdb).
    """
Tim O'Donnell's avatar
Tim O'Donnell committed
    if environ.get("MHCFLURRY_DEBUG"):
        import ipdb
        ipdb.set_trace()
    raise exception


def assert_no_null(df, message=''):
    """
Tim O'Donnell's avatar
Tim O'Donnell committed
    Raise an assertion error if the given DataFrame has any nan or inf values.
    """
    if hasattr(df, 'count'):
        with pandas.option_context('mode.use_inf_as_null', True):
            failed = df.count().sum() != df.size
    else:
        failed = np.isnan(df).sum() > 0
    if failed:
        raise_or_debug(
            AssertionError(
                "%s %s" % (message, describe_nulls(df))))


def drop_nulls_and_warn(df, related_df_with_same_index_to_describe=None):
    """
    Return a new DataFrame that is a copy of the given DataFrame where any
    rows with nulls have been removed, and a warning about them logged.
    """
    with pandas.option_context('mode.use_inf_as_null', True):
        new_df = df.dropna()
    if df.shape != new_df.shape:
        logging.warn(
            "Dropped rows with null or inf: %s -> %s:\n%s" % (
                df.shape,
                new_df.shape,
                describe_nulls(df, related_df_with_same_index_to_describe)))
    return new_df
Tim O'Donnell's avatar
Tim O'Donnell committed


def amino_acid_distribution(peptides, smoothing=0.0):
Tim O'Donnell's avatar
Tim O'Donnell committed
    """
    Compute the fraction of each amino acid across a collection of peptides.
    
    Parameters
    ----------
    peptides : list of string
    smoothing : float, optional
        Small number (e.g. 0.01) to add to all amino acid fractions. The higher
        the number the more uniform the distribution.

    Returns
    -------
    pandas.Series indexed by amino acids
    """
Tim O'Donnell's avatar
Tim O'Donnell committed
    peptides = pandas.Series(peptides)
    aa_counts = pandas.Series(peptides.map(collections.Counter).sum())
    normalized = aa_counts / aa_counts.sum()
    if smoothing:
        normalized += smoothing
        normalized /= normalized.sum()
    return normalized


def random_peptides(num, length=9, distribution=None):
    """
    Generate random peptides (kmers).

    Parameters
    ----------
    num : int
        Number of peptides to return

    length : int
        Length of each peptide

    distribution : pandas.Series
        Maps 1-letter amino acid abbreviations to
        probabilities. If not specified a uniform
        distribution is used.

    Returns
    ----------
    list of string

    """
    if num == 0:
        return []
    if distribution is None:
        distribution = pandas.Series(
            1, index=amino_acid.common_amino_acid_letters)
        distribution /= distribution.sum()

    return [
        ''.join(peptide_sequence)
        for peptide_sequence in
        numpy.random.choice(
            distribution.index,
            p=distribution.values,
            size=(int(num), int(length)))
    ]