Newer
Older
Alex Rubinsteyn
committed
# Copyright (c) 2016. Mount Sinai School of Medicine
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Alex Rubinsteyn
committed
from __future__ import print_function, division, absolute_import
import itertools
import logging
import hashlib
import time
import sys
from os import environ
Alex Rubinsteyn
committed
import pandas
Alex Rubinsteyn
committed
def all_combinations(**dict_of_lists):
"""
Iterator that generates all combinations of parameters given in the
kwargs dictionary which is expected to map argument names to lists
of possible values.
"""
arg_names = dict_of_lists.keys()
value_lists = dict_of_lists.values()
for combination_of_values in itertools.product(*value_lists):
yield dict(zip(arg_names, combination_of_values))
Alex Rubinsteyn
committed
def dataframe_cryptographic_hash(df):
"""
Return a cryptographic (i.e. collisions extremely unlikely) hash
of a dataframe. Suitible for using as a cache key.
Parameters
-----------
df : pandas.DataFrame or pandas.Series
Returns
-----------
string
"""
start = time.time()
result = hashlib.sha1(df.to_msgpack()).hexdigest()
logging.info(
"Generated dataframe hash in %0.2f sec" % (time.time() - start))
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
return result
def freeze_object(o):
"""
Recursively convert nested dicts and lists into frozensets and tuples.
"""
if isinstance(o, dict):
return frozenset({k: freeze_object(v) for k, v in o.items()}.items())
if isinstance(o, list):
return tuple(freeze_object(v) for v in o)
return o
def configure_logging(verbose=False):
level = logging.DEBUG if verbose else logging.INFO
logging.basicConfig(
format="%(asctime)s.%(msecs)d %(levelname)s %(module)s - %(funcName)s:"
" %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
stream=sys.stderr,
level=level)
def describe_nulls(df, related_df_with_same_index_to_describe=None):
"""
Return a string describing the positions of any nan or inf values
in a dataframe.
If related_df_with_same_index_to_describe is specified, it should be
a dataframe with the same index as df. Positions corresponding to
where df has null values will also be printed from this dataframe.
"""
if isinstance(df, pandas.Series):
df = df.to_frame()
with pandas.option_context('mode.use_inf_as_null', True):
null_counts_by_col = pandas.isnull(df).sum(axis=0)
null_rows = pandas.isnull(df).sum(axis=1) > 0
return (
"Columns with nulls:\n%s, related rows with nulls:\n%s, "
"full df:\n%s" % (
null_counts_by_col.index[null_counts_by_col > 0],
related_df_with_same_index_to_describe.ix[null_rows]
if related_df_with_same_index_to_describe is not None
else "(n/a)",
str(df.ix[null_rows])))
def raise_or_debug(exception):
"""
Raise the exception unless the MHCFLURRY_DEBUG environment variable is set,
in which case drop into ipython debugger (ipdb).
"""
import ipdb
ipdb.set_trace()
raise exception
def assert_no_null(df, message=''):
"""
Raise an assertion error if the given DataFrame has any nan or inf values.
"""
if hasattr(df, 'count'):
with pandas.option_context('mode.use_inf_as_null', True):
failed = df.count().sum() != df.size
else:
failed = np.isnan(df).sum() > 0
if failed:
raise_or_debug(
AssertionError(
"%s %s" % (message, describe_nulls(df))))
def drop_nulls_and_warn(df, related_df_with_same_index_to_describe=None):
"""
Return a new DataFrame that is a copy of the given DataFrame where any
rows with nulls have been removed, and a warning about them logged.
"""
with pandas.option_context('mode.use_inf_as_null', True):
new_df = df.dropna()
if df.shape != new_df.shape:
logging.warn(
"Dropped rows with null or inf: %s -> %s:\n%s" % (
df.shape,
new_df.shape,
describe_nulls(df, related_df_with_same_index_to_describe)))
return new_df
def amino_acid_distribution(peptides, smoothing=0.0):
"""
Compute the fraction of each amino acid across a collection of peptides.
Parameters
----------
peptides : list of string
smoothing : float, optional
Small number (e.g. 0.01) to add to all amino acid fractions. The higher
the number the more uniform the distribution.
Returns
-------
pandas.Series indexed by amino acids
"""
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
peptides = pandas.Series(peptides)
aa_counts = pandas.Series(peptides.map(collections.Counter).sum())
normalized = aa_counts / aa_counts.sum()
if smoothing:
normalized += smoothing
normalized /= normalized.sum()
return normalized
def random_peptides(num, length=9, distribution=None):
"""
Generate random peptides (kmers).
Parameters
----------
num : int
Number of peptides to return
length : int
Length of each peptide
distribution : pandas.Series
Maps 1-letter amino acid abbreviations to
probabilities. If not specified a uniform
distribution is used.
Returns
----------
list of string
"""
if num == 0:
return []
if distribution is None:
distribution = pandas.Series(
1, index=amino_acid.common_amino_acid_letters)
distribution /= distribution.sum()
return [
''.join(peptide_sequence)
for peptide_sequence in
numpy.random.choice(
distribution.index,
p=distribution.values,
size=(int(num), int(length)))
]