Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy
numpy.random.seed(0)
import time
import cProfile
import pstats
import pandas
from mhcflurry import Class1AffinityPredictor
from mhcflurry.common import random_peptides
NUM = 100000
DOWNLOADED_PREDICTOR = Class1AffinityPredictor.load()
def test_speed(profile=False):
starts = {}
timings = {}
profilers = {}
def start(name):
starts[name] = time.time()
if profile:
profilers[name] = cProfile.Profile()
profilers[name].enable()
def end(name):
timings[name] = time.time() - starts[name]
if profile:
profilers[name].disable()
start("first")
DOWNLOADED_PREDICTOR.predict(["SIINFEKL"], allele="HLA-A*02:01")
end("first")
peptides = random_peptides(NUM)
start("pred_%d" % NUM)
DOWNLOADED_PREDICTOR.predict(peptides, allele="HLA-A*02:01")
end("pred_%d" % NUM)
print("SPEED BENCHMARK")
print("Results:\n%s" % str(pandas.Series(timings)))
return dict(
(key, pstats.Stats(value)) for (key, value) in profilers.items())
if __name__ == '__main__':
# If run directly from python, do profiling and leave the user in a shell
# to explore results.
result = test_speed(profile=True)
result["pred_%d" % NUM].sort_stats("cumtime").reverse_order().print_stats()
# Leave in ipython
locals().update(result)
import ipdb ; ipdb.set_trace()