Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
"""
Generate allele sequences for pan-class I models.
Additional dependency: biopython
"""
from __future__ import print_function
import sys
import argparse
import numpy
import pandas
import mhcnames
import Bio.SeqIO
def normalize_simple(s):
return mhcnames.normalize_allele_name(s)
def normalize_complex(s, disallowed=["MIC", "HFE"]):
if any(item in s for item in disallowed):
return None
try:
return normalize_simple(s)
except:
while s:
s = ":".join(s.split(":")[:-1])
try:
return normalize_simple(s)
except:
pass
return None
parser = argparse.ArgumentParser(usage=__doc__)
parser.add_argument(
"aligned_fasta",
help="Aligned sequences")
parser.add_argument(
"--recapitulate-sequences",
required=True,
help="CSV giving sequences to recapitulate")
parser.add_argument(
"--differentiate-alleles",
help="File listing alleles to differentiate using additional positions")
parser.add_argument(
"--out-csv",
help="Result file")
def run():
args = parser.parse_args(sys.argv[1:])
print(args)
allele_to_sequence = {}
reader = Bio.SeqIO.parse(args.aligned_fasta, "fasta")
for record in reader:
name = record.description.split()[1]
allele_to_sequence[name] = str(record.seq)
print("Read %d aligned sequences" % len(allele_to_sequence))
allele_sequences = pandas.Series(allele_to_sequence).to_frame()
allele_sequences.columns = ['aligned']
allele_sequences['aligned'] = allele_sequences['aligned'].str.replace(
"-", "X")
allele_sequences['normalized_allele'] = allele_sequences.index.map(normalize_complex)
allele_sequences = allele_sequences.set_index("normalized_allele", drop=True)
selected_positions = []
recapitulate_df = pandas.read_csv(args.recapitulate_sequences)
recapitulate_df["normalized_allele"] = recapitulate_df.allele.map(
normalize_complex)
recapitulate_df = (
recapitulate_df
.dropna()
.drop_duplicates("normalized_allele")
.set_index("normalized_allele", drop=True))
allele_sequences["recapitulate_target"] = recapitulate_df.iloc[:,-1]
print("Sequences in recapitulate CSV that are not in aligned fasta:")
print(recapitulate_df.index[
~recapitulate_df.index.isin(allele_sequences.index)
].tolist())
allele_sequences_with_target = allele_sequences.loc[
~allele_sequences.recapitulate_target.isnull()
]
position_identities = []
target_length = int(
allele_sequences_with_target.recapitulate_target.str.len().max())
for i in range(target_length):
series_i = allele_sequences_with_target.recapitulate_target.str.get(i)
row = []
full_length_sequence_length = int(
allele_sequences_with_target.aligned.str.len().max())
for k in range(full_length_sequence_length):
series_k = allele_sequences_with_target.aligned.str.get(k)
row.append((series_i == series_k).mean())
position_identities.append(row)
position_identities = pandas.DataFrame(numpy.array(position_identities))
selected_positions = position_identities.idxmax(1).tolist()
fractions = position_identities.max(1)
print("Selected positions: ", *selected_positions)
print("Lowest concordance fraction: %0.5f" % fractions.min())
assert fractions.min() > 0.99
allele_sequences["recapitulated"] = allele_sequences.aligned.map(
lambda s: "".join(s[p] for p in selected_positions))
allele_sequences_with_target = allele_sequences.loc[
~allele_sequences.recapitulate_target.isnull()
]
agreement = (
allele_sequences_with_target.recapitulated ==
allele_sequences_with_target.recapitulate_target).mean()
print("Overall agreement: %0.5f" % agreement)
assert agreement > 0.9
# Add additional positions
if args.differentiate_alleles:
differentiate_alleles = pandas.read_csv(
args.differentiate_alleles).iloc[:,0].values
print(
"Read %d alleles to differentiate:" % len(differentiate_alleles),
differentiate_alleles)
allele_sequences_to_differentiate = allele_sequences.loc[
allele_sequences.index.isin(differentiate_alleles)
]
print(allele_sequences_to_differentiate.shape)
additional_positions = []
for (pseudo, sub_df) in allele_sequences_to_differentiate.groupby("recapitulated"):
if sub_df.aligned.nunique() > 1:
differing = pandas.DataFrame(
dict([(pos, chars) for (pos, chars) in
enumerate(zip(*sub_df.aligned.values)) if
any(c != chars[0] for c in chars) and "X" not in chars])).T
print(pseudo)
print(sub_df)
print(differing)
print()
additional_positions.extend(differing.index)
additional_positions = sorted(set(additional_positions))
print("Selected additional positions: ", additional_positions)
extended_selected_positions = sorted(
set(selected_positions).union(set(additional_positions)))
print("Extended selected positions", *extended_selected_positions)
allele_sequences["sequence"] = allele_sequences.aligned.map(
lambda s: "".join(s[p] for p in extended_selected_positions))
allele_sequences[["sequence"]].to_csv(args.out_csv, index=True)
print("Wrote: %s" % args.out_csv)
import ipdb ; ipdb.set_trace()
if __name__ == '__main__':
run()