Newer
Older
# Copyright (c) 2016. Mount Sinai School of Medicine
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
class Dummy9merIndexEncodingModel(object):
"""
Dummy molde used for testing the pMHC binding predictor.
"""
def __init__(self, constant_output_value=0):
self.constant_output_value = constant_output_value
def predict(self, X, verbose=False):
assert isinstance(X, np.ndarray)
assert len(X.shape) == 2
n_rows, n_cols = X.shape
n_cols == 9, "Expected 9mer index input input, got %d columns" % (
n_cols,)
return np.ones(n_rows, dtype=float) * self.constant_output_value
model=Dummy9merIndexEncodingModel(0),
allow_unknown_amino_acids=True)
model=Dummy9merIndexEncodingModel(0),
allow_unknown_amino_acids=False)
model=Dummy9merIndexEncodingModel(1),
allow_unknown_amino_acids=True)
model=Dummy9merIndexEncodingModel(1),
allow_unknown_amino_acids=False)