""" Model select class1 single allele models. """ import argparse import os import signal import sys import time import traceback import random from pprint import pprint import numpy import pandas from scipy.stats import kendalltau, percentileofscore, pearsonr from sklearn.metrics import roc_auc_score from mhcnames import normalize_allele_name import tqdm # progress bar tqdm.monitor_interval = 0 # see https://github.com/tqdm/tqdm/issues/481 from .class1_affinity_predictor import Class1AffinityPredictor from .encodable_sequences import EncodableSequences from .common import configure_logging, random_peptides from .local_parallelism import worker_pool_with_gpu_assignments_from_args, add_local_parallelism_args from .regression_target import from_ic50 # To avoid pickling large matrices to send to child processes when running in # parallel, we use this global variable as a place to store data. Data that is # stored here before creating the thread pool will be inherited to the child # processes upon fork() call, allowing us to share large data with the workers # via shared memory. GLOBAL_DATA = {} parser = argparse.ArgumentParser(usage=__doc__) parser.add_argument( "--data", metavar="FILE.csv", required=False, help=( "Model selection data CSV. Expected columns: " "allele, peptide, measurement_value")) parser.add_argument( "--exclude-data", metavar="FILE.csv", required=False, help=( "Data to EXCLUDE from model selection. Useful to specify the original " "training data used")) parser.add_argument( "--models-dir", metavar="DIR", required=True, help="Directory to read models") parser.add_argument( "--out-models-dir", metavar="DIR", required=True, help="Directory to write selected models") parser.add_argument( "--out-unselected-predictions", metavar="FILE.csv", help="Write predictions for validation data using unselected predictor to " "FILE.csv") parser.add_argument( "--unselected-accuracy-scorer", metavar="SCORER", default="combined:mass-spec,mse") parser.add_argument( "--unselected-accuracy-scorer-num-samples", type=int, default=1000) parser.add_argument( "--unselected-accuracy-percentile-threshold", type=float, metavar="X", default=95) parser.add_argument( "--allele", default=None, nargs="+", help="Alleles to select models for. If not specified, all alleles with " "enough measurements will be used.") parser.add_argument( "--combined-min-models", type=int, default=8, metavar="N", help="Min number of models to select per allele when using combined selector") parser.add_argument( "--combined-max-models", type=int, default=1000, metavar="N", help="Max number of models to select per allele when using combined selector") parser.add_argument( "--combined-min-contribution-percent", type=float, default=1.0, metavar="X", help="Use only model selectors that can contribute at least X %% to the " "total score. Default: %(default)s") parser.add_argument( "--mass-spec-min-measurements", type=int, metavar="N", default=1, help="Min number of measurements required for an allele to use mass-spec model " "selection") parser.add_argument( "--mass-spec-min-models", type=int, default=8, metavar="N", help="Min number of models to select per allele when using mass-spec selector") parser.add_argument( "--mass-spec-max-models", type=int, default=1000, metavar="N", help="Max number of models to select per allele when using mass-spec selector") parser.add_argument( "--mse-min-measurements", type=int, metavar="N", default=1, help="Min number of measurements required for an allele to use MSE model " "selection") parser.add_argument( "--mse-min-models", type=int, default=8, metavar="N", help="Min number of models to select per allele when using MSE selector") parser.add_argument( "--mse-max-models", type=int, default=1000, metavar="N", help="Max number of models to select per allele when using MSE selector") parser.add_argument( "--scoring", nargs="+", default=["mse", "consensus"], help="Scoring procedures to use in order") parser.add_argument( "--consensus-min-models", type=int, default=8, metavar="N", help="Min number of models to select per allele when using consensus selector") parser.add_argument( "--consensus-max-models", type=int, default=1000, metavar="N", help="Max number of models to select per allele when using consensus selector") parser.add_argument( "--consensus-num-peptides-per-length", type=int, default=10000, help="Num peptides per length to use for consensus scoring") parser.add_argument( "--mass-spec-regex", metavar="REGEX", default="mass[- ]spec", help="Regular expression for mass-spec data. Runs on measurement_source col." "Default: %(default)s.") parser.add_argument( "--verbosity", type=int, help="Keras verbosity. Default: %(default)s", default=0) add_local_parallelism_args(parser) def run(argv=sys.argv[1:]): global GLOBAL_DATA # On sigusr1 print stack trace print("To show stack trace, run:\nkill -s USR1 %d" % os.getpid()) signal.signal(signal.SIGUSR1, lambda sig, frame: traceback.print_stack()) args = parser.parse_args(argv) args.out_models_dir = os.path.abspath(args.out_models_dir) configure_logging(verbose=args.verbosity > 1) input_predictor = Class1AffinityPredictor.load(args.models_dir) print("Loaded: %s" % input_predictor) if args.allele: alleles = [normalize_allele_name(a) for a in args.allele] else: alleles = input_predictor.supported_alleles metadata_dfs = {} if args.data: df = pandas.read_csv(args.data) print("Loaded data: %s" % (str(df.shape))) df = df.ix[ (df.peptide.str.len() >= 8) & (df.peptide.str.len() <= 15) ] print("Subselected to 8-15mers: %s" % (str(df.shape))) # Allele names in data are assumed to be already normalized. df = df.loc[df.allele.isin(alleles)].dropna() print("Selected %d alleles: %s" % (len(alleles), ' '.join(alleles))) if args.exclude_data: exclude_df = pandas.read_csv(args.exclude_data) metadata_dfs["model_selection_exclude"] = exclude_df print("Loaded exclude data: %s" % (str(df.shape))) df["_key"] = df.allele + "__" + df.peptide exclude_df["_key"] = exclude_df.allele + "__" + exclude_df.peptide df["_excluded"] = df._key.isin(exclude_df._key.unique()) print("Excluding measurements per allele (counts): ") print(df.groupby("allele")._excluded.sum()) print("Excluding measurements per allele (fractions): ") print(df.groupby("allele")._excluded.mean()) df = df.loc[~df._excluded] del df["_excluded"] del df["_key"] print("Reduced data to: %s" % (str(df.shape))) metadata_dfs["model_selection_data"] = df df["mass_spec"] = df.measurement_source.str.contains( args.mass_spec_regex) else: df = None if args.out_unselected_predictions: df["unselected_prediction"] = input_predictor.predict( alleles=df.allele.values, peptides=df.peptide.values) df.to_csv(args.out_unselected_predictions) print("Wrote: %s" % args.out_unselected_predictions) selectors = {} selector_to_model_selection_kwargs = {} def make_selector( scoring, combined_min_contribution_percent=args.combined_min_contribution_percent): if scoring in selectors: return ( selectors[scoring], selector_to_model_selection_kwargs[scoring]) start = time.time() if scoring.startswith("combined:"): model_selection_kwargs = { 'min_models': args.combined_min_models, 'max_models': args.combined_max_models, } component_selectors = [] for component_selector in scoring.split(":", 1)[1].split(","): component_selectors.append( make_selector( component_selector)[0]) selector = CombinedModelSelector( component_selectors, min_contribution_percent=combined_min_contribution_percent) elif scoring == "mse": model_selection_kwargs = { 'min_models': args.mse_min_models, 'max_models': args.mse_max_models, } min_measurements = args.mse_min_measurements selector = MSEModelSelector( df=df.loc[~df.mass_spec], predictor=input_predictor, min_measurements=min_measurements) elif scoring == "mass-spec": mass_spec_df = df.loc[df.mass_spec] model_selection_kwargs = { 'min_models': args.mass_spec_min_models, 'max_models': args.mass_spec_max_models, } min_measurements = args.mass_spec_min_measurements selector = MassSpecModelSelector( df=mass_spec_df, predictor=input_predictor, min_measurements=min_measurements) elif scoring == "consensus": model_selection_kwargs = { 'min_models': args.consensus_min_models, 'max_models': args.consensus_max_models, } selector = ConsensusModelSelector( predictor=input_predictor, num_peptides_per_length=args.consensus_num_peptides_per_length) else: raise ValueError("Unsupported scoring method: %s" % scoring) print("Instantiated model selector %s in %0.2f sec." % ( scoring, time.time() - start)) return (selector, model_selection_kwargs) for scoring in args.scoring: (selector, model_selection_kwargs) = make_selector(scoring) selectors[scoring] = selector selector_to_model_selection_kwargs[scoring] = model_selection_kwargs unselected_accuracy_scorer = None if args.unselected_accuracy_scorer: # Force running all selectors by setting combined_min_contribution_percent=0. unselected_accuracy_scorer = make_selector( args.unselected_accuracy_scorer, combined_min_contribution_percent=0.0)[0] print("Using unselected accuracy scorer: %s" % unselected_accuracy_scorer) GLOBAL_DATA["unselected_accuracy_scorer"] = unselected_accuracy_scorer print("Selectors for alleles:") allele_to_selector = {} allele_to_model_selection_kwargs = {} for allele in alleles: selector = None for possible_selector in args.scoring: if selectors[possible_selector].usable_for_allele(allele=allele): selector = selectors[possible_selector] print("%20s %s" % (allele, selector.plan_summary(allele))) break if selector is None: raise ValueError("No selectors usable for allele: %s" % allele) allele_to_selector[allele] = selector allele_to_model_selection_kwargs[allele] = ( selector_to_model_selection_kwargs[possible_selector]) GLOBAL_DATA["args"] = args GLOBAL_DATA["input_predictor"] = input_predictor GLOBAL_DATA["unselected_accuracy_scorer"] = unselected_accuracy_scorer GLOBAL_DATA["allele_to_selector"] = allele_to_selector GLOBAL_DATA["allele_to_model_selection_kwargs"] = allele_to_model_selection_kwargs if not os.path.exists(args.out_models_dir): print("Attempting to create directory: %s" % args.out_models_dir) os.mkdir(args.out_models_dir) print("Done.") result_predictor = Class1AffinityPredictor(metadata_dataframes=metadata_dfs) worker_pool = worker_pool_with_gpu_assignments_from_args(args) start = time.time() if worker_pool is None: # Serial run print("Running in serial.") results = ( model_select(allele) for allele in alleles) else: # Parallel run random.shuffle(alleles) results = worker_pool.imap_unordered( model_select, alleles, chunksize=1) unselected_summary = [] model_selection_dfs = [] for result in tqdm.tqdm(results, total=len(alleles)): pprint(result) summary_dict = dict(result) summary_dict["retained"] = result["selected"] is not None del summary_dict["selected"] unselected_summary.append(summary_dict) if result['selected'] is not None: model_selection_dfs.append( result['selected'].metadata_dataframes['model_selection']) result_predictor.merge_in_place([result['selected']]) if model_selection_dfs: model_selection_df = pandas.concat( model_selection_dfs, ignore_index=True) model_selection_df["selector"] = model_selection_df.allele.map( allele_to_selector) result_predictor.metadata_dataframes["model_selection"] = ( model_selection_df) result_predictor.metadata_dataframes["unselected_summary"] = ( pandas.DataFrame(unselected_summary)) print("Done model selecting for %d alleles." % len(alleles)) result_predictor.save(args.out_models_dir) model_selection_time = time.time() - start if worker_pool: worker_pool.close() worker_pool.join() print("Model selection time %0.2f min." % (model_selection_time / 60.0)) print("Predictor written to: %s" % args.out_models_dir) class ScrambledPredictor(object): def __init__(self, predictor): self.predictor = predictor self._predictions = {} self._allele = None def predict(self, peptides, allele): if peptides not in self._predictions: self._predictions[peptides] = pandas.Series( self.predictor.predict(peptides=peptides, allele=allele)) self._allele = allele assert allele == self._allele return self._predictions[peptides].sample(frac=1.0).values def model_select(allele): global GLOBAL_DATA unselected_accuracy_scorer = GLOBAL_DATA["unselected_accuracy_scorer"] selector = GLOBAL_DATA["allele_to_selector"][allele] model_selection_kwargs = GLOBAL_DATA[ "allele_to_model_selection_kwargs" ][allele] predictor = GLOBAL_DATA["input_predictor"] args = GLOBAL_DATA["args"] unselected_accuracy_scorer_samples = GLOBAL_DATA["args"].unselected_accuracy_scorer_num_samples result_dict = { "allele": allele } unselected_score = None unselected_score_percentile = None unselected_score_scrambled_mean = None if unselected_accuracy_scorer: unselected_score_function = ( unselected_accuracy_scorer.score_function(allele)) additional_metadata = {} unselected_score = unselected_score_function( predictor, additional_metadata_out=additional_metadata) scrambled_predictor = ScrambledPredictor(predictor) scrambled_scores = numpy.array([ unselected_score_function( scrambled_predictor) for _ in range(unselected_accuracy_scorer_samples) ]) unselected_score_scrambled_mean = scrambled_scores.mean() unselected_score_percentile = percentileofscore( scrambled_scores, unselected_score) print( "Unselected score and percentile", allele, unselected_score, unselected_score_percentile, additional_metadata) result_dict.update( dict(("unselected_%s" % key, value) for (key, value) in additional_metadata.items())) selected = None threshold = args.unselected_accuracy_percentile_threshold if unselected_score_percentile is None or unselected_score_percentile >= threshold: selected = predictor.model_select( score_function=selector.score_function(allele=allele), alleles=[allele], **model_selection_kwargs) result_dict["unselected_score_plan"] = ( unselected_accuracy_scorer.plan_summary(allele) if unselected_accuracy_scorer else None) result_dict["selector_score_plan"] = selector.plan_summary(allele) result_dict["unselected_accuracy_score_percentile"] = unselected_score_percentile result_dict["unselected_score"] = unselected_score result_dict["unselected_score_scrambled_mean"] = unselected_score_scrambled_mean result_dict["selected"] = selected result_dict["num_models"] = len(selected.neural_networks) if selected else None return result_dict def cache_encoding(predictor, peptides): # Encode the peptides for each neural network, so the encoding # becomes cached. for network in predictor.neural_networks: network.peptides_to_network_input(peptides) class ScoreFunction(object): """ Thin wrapper over a score function (Class1AffinityPredictor -> float). Used to keep a summary string associated with the function. """ def __init__(self, function, summary=None): self.function = function self.summary = summary if summary else "(n/a)" def __call__(self, *args, **kwargs): return self.function(*args, **kwargs) class CombinedModelSelector(object): """ Model selector that computes a weighted average over other model selectors. """ def __init__(self, model_selectors, weights=None, min_contribution_percent=1.0): if weights is None: weights = numpy.ones(shape=(len(model_selectors),)) self.model_selectors = model_selectors self.selector_to_weight = dict(zip(self.model_selectors, weights)) self.min_contribution_percent = min_contribution_percent def usable_for_allele(self, allele): return any( selector.usable_for_allele(allele) for selector in self.model_selectors) def plan_summary(self, allele): return self.score_function(allele, dry_run=True).summary def score_function(self, allele, dry_run=False): selector_to_max_weighted_score = {} for selector in self.model_selectors: weight = self.selector_to_weight[selector] if selector.usable_for_allele(allele): max_weighted_score = selector.max_absolute_value(allele) * weight else: max_weighted_score = 0 selector_to_max_weighted_score[selector] = max_weighted_score max_total_score = sum(selector_to_max_weighted_score.values()) # Use only selectors that can contribute >1% to the total score selectors_to_use = [ selector for selector in self.model_selectors if ( selector_to_max_weighted_score[selector] > max_total_score * self.min_contribution_percent / 100.0) ] summary = ", ".join([ "%s(|%.3f|)" % ( selector.plan_summary(allele), selector_to_max_weighted_score[selector]) for selector in selectors_to_use ]) if dry_run: score = None else: score_functions_and_weights = [ (selector.score_function(allele=allele), self.selector_to_weight[selector]) for selector in selectors_to_use ] def score(predictor, additional_metadata_out=None): scores = numpy.array([ score_function( predictor, additional_metadata_out=additional_metadata_out) * weight for (score_function, weight) in score_functions_and_weights ]) if additional_metadata_out is not None: additional_metadata_out["combined_score_terms"] = str( list(scores)) return scores.sum() return ScoreFunction(score, summary=summary) class ConsensusModelSelector(object): """ Model selector that scores sub-ensembles based on their Kendall tau consistency with the full ensemble over a set of random peptides. """ def __init__( self, predictor, num_peptides_per_length=10000, multiply_score_by_value=10.0): (min_length, max_length) = predictor.supported_peptide_lengths peptides = [] for length in range(min_length, max_length + 1): peptides.extend( random_peptides(num_peptides_per_length, length=length)) self.peptides = EncodableSequences.create(peptides) self.predictor = predictor self.multiply_score_by_value = multiply_score_by_value cache_encoding(self.predictor, self.peptides) def usable_for_allele(self, allele): return True def max_absolute_value(self, allele): return self.multiply_score_by_value def plan_summary(self, allele): return "consensus (%d points)" % len(self.peptides) def score_function(self, allele): full_ensemble_predictions = self.predictor.predict( allele=allele, peptides=self.peptides) def score(predictor, additional_metadata_out=None): predictions = predictor.predict( allele=allele, peptides=self.peptides, ) tau = kendalltau(predictions, full_ensemble_predictions).correlation if additional_metadata_out is not None: additional_metadata_out["score_consensus_tau"] = tau return tau * self.multiply_score_by_value return ScoreFunction( score, summary=self.plan_summary(allele)) class MSEModelSelector(object): """ Model selector that uses mean-squared error to score models. Inequalities are supported. """ def __init__( self, df, predictor, min_measurements=1, multiply_score_by_data_size=True): self.df = df self.predictor = predictor self.min_measurements = min_measurements self.multiply_score_by_data_size = multiply_score_by_data_size def usable_for_allele(self, allele): return (self.df.allele == allele).sum() >= self.min_measurements def max_absolute_value(self, allele): if self.multiply_score_by_data_size: return (self.df.allele == allele).sum() else: return 1.0 def plan_summary(self, allele): return self.score_function(allele).summary def score_function(self, allele): sub_df = self.df.loc[self.df.allele == allele].reset_index(drop=True) peptides = EncodableSequences.create(sub_df.peptide.values) def score(predictor, additional_metadata_out=None): predictions = predictor.predict( allele=allele, peptides=peptides, ) deviations = from_ic50(predictions) - from_ic50( sub_df.measurement_value) if 'measurement_inequality' in sub_df.columns: # Must reverse meaning of inequality since we are working with # transformed 0-1 values, which are anti-correlated with the ic50s. # The measurement_inequality column is given in terms of ic50s. deviations.loc[ ( (sub_df.measurement_inequality == "<") & (deviations > 0)) | ((sub_df.measurement_inequality == ">") & (deviations < 0)) ] = 0.0 score_mse = (1 - (deviations ** 2).mean()) if additional_metadata_out is not None: additional_metadata_out["score_MSE"] = 1 - score_mse # We additionally include other scores on (=) measurements as # a convenience eq_df = sub_df if 'measurement_inequality' in sub_df.columns: eq_df = sub_df.loc[ sub_df.measurement_inequality == "=" ] additional_metadata_out["score_pearsonr"] = ( pearsonr( numpy.log(eq_df.measurement_value.values), numpy.log(predictions[eq_df.index.values]))[0]) for threshold in [500, 5000, 15000]: if (eq_df.measurement_value < threshold).nunique() == 2: additional_metadata_out["score_AUC@%d" % threshold] = ( roc_auc_score( (eq_df.measurement_value < threshold).values, -1 * predictions[eq_df.index.values])) return score_mse * ( len(sub_df) if self.multiply_score_by_data_size else 1) summary = "mse (%d points)" % (len(sub_df)) return ScoreFunction(score, summary=summary) class MassSpecModelSelector(object): """ Model selector that uses PPV of differentiating decoys from hits from mass-spec experiments. """ def __init__( self, df, predictor, decoys_per_length=0, min_measurements=100, multiply_score_by_data_size=True): # Index is peptide, columns are alleles hit_matrix = df.groupby( ["peptide", "allele"]).measurement_value.count().unstack().fillna( 0).astype(bool) if decoys_per_length: (min_length, max_length) = predictor.supported_peptide_lengths decoys = [] for length in range(min_length, max_length + 1): decoys.extend( random_peptides(decoys_per_length, length=length)) decoy_matrix = pandas.DataFrame( index=decoys, columns=hit_matrix.columns, dtype=bool) decoy_matrix[:] = False full_matrix = pandas.concat([hit_matrix, decoy_matrix]) else: full_matrix = hit_matrix if len(full_matrix) > 0: full_matrix = full_matrix.sample(frac=1.0).astype(float) self.df = full_matrix self.predictor = predictor self.min_measurements = min_measurements self.multiply_score_by_data_size = multiply_score_by_data_size self.peptides = EncodableSequences.create(full_matrix.index.values) cache_encoding(self.predictor, self.peptides) @staticmethod def ppv(y_true, predictions): df = pandas.DataFrame({"prediction": predictions, "y_true": y_true}) return df.sort_values("prediction", ascending=True)[ : int(y_true.sum()) ].y_true.mean() def usable_for_allele(self, allele): return allele in self.df.columns and ( self.df[allele].sum() >= self.min_measurements) def max_absolute_value(self, allele): if self.multiply_score_by_data_size: return self.df[allele].sum() else: return 1.0 def plan_summary(self, allele): return self.score_function(allele).summary def score_function(self, allele): total_hits = self.df[allele].sum() total_decoys = (self.df[allele] == 0).sum() multiplier = total_hits if self.multiply_score_by_data_size else 1 def score(predictor, additional_metadata_out=None): predictions = predictor.predict( allele=allele, peptides=self.peptides, ) ppv = self.ppv(self.df[allele], predictions) if additional_metadata_out is not None: additional_metadata_out["score_mass_spec_PPV"] = ppv # We additionally compute AUC score. additional_metadata_out["score_mass_spec_AUC"] = roc_auc_score( self.df[allele].values, -1 * predictions) return ppv * multiplier summary = "mass-spec (%d hits / %d decoys)" % (total_hits, total_decoys) return ScoreFunction(score, summary=summary) if __name__ == '__main__': run()