import numpy import pandas class PercentRankTransform(object): """ Transform arbitrary values into percent ranks. """ def __init__(self): self.cdf = None self.bin_edges = None def fit(self, values, bins): """ Fit the transform using the given values (in our case ic50s). Parameters ---------- values : ic50 values bins : bins for the cumulative distribution function Anything that can be passed to numpy.histogram's "bins" argument can be used here. """ assert self.cdf is None assert self.bin_edges is None assert len(values) > 0 (hist, self.bin_edges) = numpy.histogram(values, bins=bins) self.cdf = numpy.ones(len(hist) + 3) * numpy.nan self.cdf[0] = 0.0 self.cdf[1] = 0.0 self.cdf[-1] = 100.0 numpy.cumsum(hist * 100.0 / numpy.sum(hist), out=self.cdf[2:-1]) assert not numpy.isnan(self.cdf).any() def transform(self, values): """ Return percent ranks (range [0, 100]) for the given values. """ assert self.cdf is not None assert self.bin_edges is not None indices = numpy.searchsorted(self.bin_edges, values) result = self.cdf[indices] assert len(result) == len(values) return numpy.minimum(result, 100.0) def to_series(self): """ Serialize the fit to a pandas.Series. The index on the series gives the bin edges and the valeus give the CDF. Returns ------- pandas.Series """ return pandas.Series( self.cdf, index=[numpy.nan] + list(self.bin_edges) + [numpy.nan]) @staticmethod def from_series(series): """ Deseralize a PercentRankTransform the given pandas.Series, as returned by `to_series()`. Parameters ---------- series : pandas.Series Returns ------- PercentRankTransform """ result = PercentRankTransform() result.cdf = series.values result.bin_edges = series.index.values[1:-1] return result