#!/bin/bash # # Create "curated" training data, which combines an IEDB download with additional # published data, removes unusable entries, normalizes allele name, and performs # other filtering and standardization. # set -e set -x DOWNLOAD_NAME=data_curated SCRATCH_DIR=${TMPDIR-/tmp}/mhcflurry-downloads-generation SCRIPT_ABSOLUTE_PATH="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)/$(basename "${BASH_SOURCE[0]}")" SCRIPT_DIR=$(dirname "$SCRIPT_ABSOLUTE_PATH") export PYTHONUNBUFFERED=1 mkdir -p "$SCRATCH_DIR" rm -rf "$SCRATCH_DIR/$DOWNLOAD_NAME" mkdir "$SCRATCH_DIR/$DOWNLOAD_NAME" # Send stdout and stderr to a logfile included with the archive. exec > >(tee -ia "$SCRATCH_DIR/$DOWNLOAD_NAME/LOG.txt") exec 2> >(tee -ia "$SCRATCH_DIR/$DOWNLOAD_NAME/LOG.txt" >&2) # Log some environment info date pip freeze git status cd $SCRATCH_DIR/$DOWNLOAD_NAME cp $SCRIPT_DIR/curate.py . # No mass-spec data time python curate.py \ --data-iedb \ "$(mhcflurry-downloads path data_iedb)/mhc_ligand_full.csv.bz2" \ --data-kim2014 \ "$(mhcflurry-downloads path data_published)/bdata.20130222.mhci.public.1.txt" \ --out-csv curated_training_data.no_mass_spec.csv # With mass-spec data time python curate.py \ --data-iedb \ "$(mhcflurry-downloads path data_iedb)/mhc_ligand_full.csv.bz2" \ --data-kim2014 \ "$(mhcflurry-downloads path data_published)/bdata.20130222.mhci.public.1.txt" \ --data-systemhc-atlas \ "$(mhcflurry-downloads path data_systemhcatlas)/data.csv.bz2" \ --include-iedb-mass-spec \ --out-csv curated_training_data.with_mass_spec.csv bzip2 curated_training_data.no_mass_spec.csv bzip2 curated_training_data.with_mass_spec.csv cp $SCRIPT_ABSOLUTE_PATH . bzip2 LOG.txt tar -cjf "../${DOWNLOAD_NAME}.tar.bz2" * echo "Created archive: $SCRATCH_DIR/$DOWNLOAD_NAME.tar.bz2"