import time import collections import logging import numpy import pandas import keras.models import keras.layers.pooling import keras.regularizers from keras.layers import Input import keras.layers.merge from keras.layers.core import Dense, Flatten, Dropout from keras.layers.embeddings import Embedding from keras.layers.normalization import BatchNormalization from mhcflurry.hyperparameters import HyperparameterDefaults from ..encodable_sequences import EncodableSequences from ..regression_target import to_ic50, from_ic50 from ..common import random_peptides, amino_acid_distribution class Class1BindingPredictor(object): network_hyperparameter_defaults = HyperparameterDefaults( kmer_size=15, use_embedding=True, embedding_input_dim=21, embedding_output_dim=8, pseudosequence_use_embedding=True, layer_sizes=[32], dense_layer_l1_regularization=0.0, dense_layer_l2_regularization=0.0, activation="tanh", init="glorot_uniform", output_activation="sigmoid", dropout_probability=0.0, batch_normalization=True, embedding_init_method="glorot_uniform", locally_connected_layers=[], optimizer="rmsprop", ) input_encoding_hyperparameter_defaults = HyperparameterDefaults( left_edge=4, right_edge=4) fit_hyperparameter_defaults = HyperparameterDefaults( max_epochs=250, validation_split=None, early_stopping=False, take_best_epoch=False, random_negative_rate=0.0, random_negative_constant=0, random_negative_affinity_min=50000.0, random_negative_affinity_max=50000.0, random_negative_match_distribution=True, random_negative_distribution_smoothing=0.0) early_stopping_hyperparameter_defaults = HyperparameterDefaults( monitor='val_loss', min_delta=0, patience=0, verbose=1, mode='auto') hyperparameter_defaults = network_hyperparameter_defaults.extend( input_encoding_hyperparameter_defaults).extend( fit_hyperparameter_defaults).extend( early_stopping_hyperparameter_defaults) def __init__(self, **hyperparameters): self.hyperparameters = self.hyperparameter_defaults.with_defaults( hyperparameters) self.network = None self.fit_history = None self.fit_seconds = None def __getstate__(self): result = dict(self.__dict__) del result['network'] result['fit_history'] = None result['network_json'] = self.network.to_json() result['network_weights'] = self.get_weights() return result def __setstate__(self, state): network_json = state.pop('network_json') network_weights = state.pop('network_weights') self.__dict__.update(state) self.network = keras.models.model_from_json(network_json) self.set_weights(network_weights) def get_weights(self): """ Returns weights, which can be passed to set_weights later. """ return [x.copy() for x in self.network.get_weights()] def set_weights(self, weights): """ Reset the model weights. """ self.network.set_weights(weights) def peptides_to_network_input(self, peptides): encoder = EncodableSequences.create(peptides) if self.hyperparameters['use_embedding']: encoded = encoder.variable_length_to_fixed_length_categorical( max_length=self.hyperparameters['kmer_size'], **self.input_encoding_hyperparameter_defaults.subselect( self.hyperparameters)) else: encoded = encoder.variable_length_to_fixed_length_one_hot( max_length=self.hyperparameters['kmer_size'], **self.input_encoding_hyperparameter_defaults.subselect( self.hyperparameters)) assert len(encoded) == len(peptides) return encoded def pseudosequence_to_network_input(self, pseudosequences): encoder = EncodableSequences.create(pseudosequences) if self.hyperparameters['pseudosequence_use_embedding']: encoded = encoder.fixed_length_categorical() else: encoded = encoder.fixed_length_one_hot() assert len(encoded) == len(pseudosequences) return encoded def fit( self, peptides, affinities, allele_pseudosequences=None, sample_weights=None, verbose=1): encodable_peptides = EncodableSequences.create(peptides) peptide_encoding = self.peptides_to_network_input(encodable_peptides) peptide_to_encoding = dict( zip(encodable_peptides.sequences, peptide_encoding)) length_counts = ( pandas.Series(encodable_peptides.sequences) .str.len().value_counts().to_dict()) num_random_negative = {} for length in range(8, 16): num_random_negative[length] = int( length_counts.get(length, 0) * self.hyperparameters['random_negative_rate'] + self.hyperparameters['random_negative_constant']) num_random_negative = pandas.Series(num_random_negative) logging.info("Random negative counts per length:\n%s" % ( str(num_random_negative))) aa_distribution = None if self.hyperparameters['random_negative_match_distribution']: aa_distribution = amino_acid_distribution( encodable_peptides.sequences, smoothing=self.hyperparameters[ 'random_negative_distribution_smoothing']) logging.info( "Using amino acid distribution for random negative:\n%s" % ( str(aa_distribution))) y_values = from_ic50(affinities) assert numpy.isnan(y_values).sum() == 0, numpy.isnan(y_values).sum() x_dict_without_random_negatives = { 'peptide': peptide_encoding, } pseudosequence_length = None if allele_pseudosequences is not None: pseudosequences_input = self.pseudosequence_to_network_input( allele_pseudosequences) pseudosequence_length = len(pseudosequences_input[0]) x_dict_without_random_negatives['pseudosequence'] = ( pseudosequences_input) if self.network is None: self.network = self.make_network( pseudosequence_length=pseudosequence_length, **self.network_hyperparameter_defaults.subselect( self.hyperparameters)) y_dict_with_random_negatives = { "output": numpy.concatenate([ from_ic50( numpy.random.uniform( self.hyperparameters[ 'random_negative_affinity_min'], self.hyperparameters[ 'random_negative_affinity_max'], int(num_random_negative.sum()))), y_values, ]), } if sample_weights is not None: sample_weights_with_random_negatives = numpy.concatenate([ numpy.ones(int(num_random_negative.sum())), sample_weights]) val_losses = [] min_val_loss_iteration = None min_val_loss = None self.fit_history = collections.defaultdict(list) start = time.time() for i in range(self.hyperparameters['max_epochs']): random_negative_peptides_list = [] for (length, count) in num_random_negative.items(): random_negative_peptides_list.extend( random_peptides( count, length=length, distribution=aa_distribution)) random_negative_peptides_encodable = ( EncodableSequences.create( random_negative_peptides_list)) random_negative_peptides_encoding = ( self.peptides_to_network_input( random_negative_peptides_encodable)) x_dict_with_random_negatives = { "peptide": numpy.concatenate([ random_negative_peptides_encoding, peptide_encoding, ]) if len(random_negative_peptides_encoding) > 0 else peptide_encoding } if pseudosequence_length: # TODO: add random pseudosequences for random negative peptides raise NotImplemented( "Allele pseudosequences unsupported with random negatives") fit_history = self.network.fit( x_dict_with_random_negatives, y_dict_with_random_negatives, shuffle=True, verbose=verbose, epochs=1, validation_split=self.hyperparameters[ 'validation_split'], sample_weight=sample_weights) for (key, value) in fit_history.history.items(): self.fit_history[key].extend(value) logging.info( "Epoch %3d / %3d: loss=%g. Min val loss at epoch %s" % ( i, self.hyperparameters['max_epochs'], self.fit_history['loss'][-1], min_val_loss_iteration)) if self.hyperparameters['validation_split']: val_loss = fit_history.history['val_loss'][-1] val_losses.append(val_loss) if min_val_loss is None or val_loss <= min_val_loss: min_val_loss = val_loss min_val_loss_iteration = i if self.hyperparameters['early_stopping']: threshold = ( min_val_loss_iteration + self.hyperparameters['patience']) if i > threshold: logging.info("Early stopping") break self.fit_seconds = time.time() - start def predict(self, peptides, allele_pseudosequences=None): x_dict = { 'peptide': self.peptides_to_network_input(peptides) } if allele_pseudosequences is not None: pseudosequences_input = self.pseudosequence_to_network_input( allele_pseudosequences) x_dict['pseudosequence'] = pseudosequences_input (predictions,) = numpy.array(self.network.predict(x_dict)).T return to_ic50(predictions) @staticmethod def make_network( pseudosequence_length, kmer_size, use_embedding, embedding_input_dim, embedding_output_dim, pseudosequence_use_embedding, layer_sizes, dense_layer_l1_regularization, dense_layer_l2_regularization, activation, init, output_activation, dropout_probability, batch_normalization, embedding_init_method, locally_connected_layers, optimizer): if use_embedding: peptide_input = Input( shape=(kmer_size,), dtype='int32', name='peptide') current_layer = Embedding( input_dim=embedding_input_dim, output_dim=embedding_output_dim, input_length=kmer_size, embeddings_initializer=embedding_init_method)(peptide_input) else: peptide_input = Input( shape=(kmer_size, 21), dtype='float32', name='peptide') current_layer = peptide_input inputs = [peptide_input] for locally_connected_params in locally_connected_layers: current_layer = keras.layers.LocallyConnected1D( **locally_connected_params)(current_layer) current_layer = Flatten()(current_layer) if batch_normalization: current_layer = BatchNormalization()(current_layer) if dropout_probability: current_layer = Dropout(dropout_probability)(current_layer) if pseudosequence_length: if pseudosequence_use_embedding: pseudosequence_input = Input( shape=(pseudosequence_length,), dtype='int32', name='pseudosequence') pseudo_embedding_layer = Embedding( input_dim=embedding_input_dim, output_dim=embedding_output_dim, input_length=pseudosequence_length, embeddings_initializer=embedding_init_method)( pseudosequence_input) else: pseudosequence_input = Input( shape=(pseudosequence_length, 21), dtype='float32', name='peptide') pseudo_embedding_layer = pseudosequence_input inputs.append(pseudosequence_input) pseudo_embedding_layer = Flatten()(pseudo_embedding_layer) current_layer = keras.layers.concatenate([ current_layer, pseudo_embedding_layer ]) for layer_size in layer_sizes: kernel_regularizer = None l1 = dense_layer_l1_regularization l2 = dense_layer_l2_regularization if l1 > 0 or l2 > 0: kernel_regularizer = keras.regularizers.l1_l2(l1, l2) current_layer = Dense( layer_size, activation=activation, kernel_regularizer=kernel_regularizer)(current_layer) if batch_normalization: current_layer = BatchNormalization()(current_layer) if dropout_probability > 0: current_layer = Dropout(dropout_probability)(current_layer) output = Dense( 1, kernel_initializer=init, activation=output_activation, name="output")(current_layer) model = keras.models.Model(inputs=inputs, outputs=[output]) model.compile( loss="mse", optimizer=optimizer) return model