""" Class for encoding variable-length flanking and peptides to fixed-size numerical matrices """ from __future__ import ( print_function, division, absolute_import, ) from six import string_types from collections import namedtuple from .encodable_sequences import EncodingError, EncodableSequences import numpy import pandas EncodingResult = namedtuple( "EncodingResult", ["array", "peptide_lengths"]) class FlankingEncoding(object): """ Encode peptides and optionally their N- and C-flanking sequences into fixed size numerical matrices. Similar to EncodableSequences but with support for flanking sequences and the encoding scheme used by the processing predictor. Instances of this class have an immutable list of peptides with flanking sequences. Encodings are cached in the instances for faster performance when the same set of peptides needs to encoded more than once. """ unknown_character = "X" def __init__(self, peptides, n_flanks, c_flanks): """ Constructor. Sequences of any lengths can be passed. Parameters ---------- peptides : list of string Peptide sequences n_flanks : list of string [same length as peptides] Upstream sequences c_flanks : list of string [same length as peptides] Downstream sequences """ self.dataframe = pandas.DataFrame({ "peptide": peptides, "n_flank": n_flanks, "c_flank": c_flanks, }, dtype=str) self.encoding_cache = {} def __len__(self): """ Number of peptides. """ return len(self.dataframe) def vector_encode( self, vector_encoding_name, peptide_max_length, n_flank_length, c_flank_length, allow_unsupported_amino_acids=True): """ Encode variable-length sequences to a fixed-size matrix. Parameters ---------- vector_encoding_name : string How to represent amino acids. One of "BLOSUM62", "one-hot", etc. See `amino_acid.available_vector_encodings()`. peptide_max_length : int Maximum supported peptide length. n_flank_length : int Maximum supported N-flank length c_flank_length : int Maximum supported C-flank length allow_unsupported_amino_acids : bool If True, non-canonical amino acids will be replaced with the X character before encoding. Returns ------- numpy.array with shape (num sequences, length, m) where - num sequences is number of peptides, i.e. len(self) - length is peptide_max_length + n_flank_length + c_flank_length - m is the vector encoding length (usually 21). """ cache_key = ( "vector_encode", vector_encoding_name, peptide_max_length, n_flank_length, c_flank_length, allow_unsupported_amino_acids) if cache_key not in self.encoding_cache: result = self.encode( vector_encoding_name=vector_encoding_name, df=self.dataframe, peptide_max_length=peptide_max_length, n_flank_length=n_flank_length, c_flank_length=c_flank_length, allow_unsupported_amino_acids=allow_unsupported_amino_acids) self.encoding_cache[cache_key] = result return self.encoding_cache[cache_key] @staticmethod def encode( vector_encoding_name, df, peptide_max_length, n_flank_length, c_flank_length, allow_unsupported_amino_acids=False): """ Encode variable-length sequences to a fixed-size matrix. Helper function. Users should use `vector_encode`. Parameters ---------- vector_encoding_name : string df : pandas.DataFrame peptide_max_length : int n_flank_length : int c_flank_length : int allow_unsupported_amino_acids : bool Returns ------- numpy.array """ error_df = df.loc[ (df.peptide.str.len() > peptide_max_length) | (df.peptide.str.len() < 1) ] if len(error_df) > 0: raise EncodingError( "Sequence '%s' (length %d) unsupported. There are %d " "total peptides with this length." % ( error_df.iloc[0].peptide, len(error_df.iloc[0].peptide), len(error_df)), supported_peptide_lengths=(1, peptide_max_length + 1)) if n_flank_length > 0: n_flanks = df.n_flank.str.pad( n_flank_length, side="left", fillchar="X").str.slice(-n_flank_length).str.upper() else: n_flanks = pandas.Series([""] * len(df)) c_flanks = df.c_flank.str.pad( c_flank_length, side="right", fillchar="X").str.slice(0, c_flank_length).str.upper() peptides = df.peptide.str.upper() concatenated = n_flanks + peptides + c_flanks encoder = EncodableSequences.create(concatenated.values) array = encoder.variable_length_to_fixed_length_vector_encoding( vector_encoding_name=vector_encoding_name, alignment_method="right_pad", max_length=n_flank_length + peptide_max_length + c_flank_length, allow_unsupported_amino_acids=allow_unsupported_amino_acids) result = EncodingResult( array, peptide_lengths=peptides.str.len().values) return result