""" Idea: Fully convolutional network with softmax output. Let it take a 35mer: - N flank [10 aa] - peptide [7-15 aa] - C flank [10 aa] Train on monoallelic mass spec. Match positive examples (hits) to negatives from the same sample by finding unobserved peptides with as close as possible a match for predicted binding affinity. In final layer, take max cleavage score over peptide and the individual score for the position right before the peptide terminus. Compute the ratio of these. Or actually reverse of that. Hits get label 1, decoys get 0. For a hit with sequence NNNNNNNNNNPPPPPPPPPCCCCCCCCCC penalize on: [----------1000000000---------] For a decoy with same sequence, penalize it on: [----------0-----------------] Train separate models for N- and C-terminal cleavage. Issue: - it'll learn mass spec biases in the peptide Possible fix: - Also provide the amino acid counts of the peptide as auxiliary inputs. After training, set the cysteine value to 0. Architecture: architecture (for N terminal: for C terminal reverse the sequences): input of length S=25 [flank + left-aligned peptide] *** conv [vector of length S] *** *** [more convs and local pools] *** *** output [vector of length S] *** *** extract: position 10 and max of peptide positions [2-vector] *** concat:[position 10, max of peptide positions, number of Alananine, ..., number of Y in peptide] *** single dense node, softmax activation [1-vector] Train on monoallelic. Decoys are length-matched to hits and sampled from the same transcripts, selecting an unobeserved peptide with as close as possible the same predicted affinity. *** + repeat vector for each position *** conv *** *** conv *** *** ... conv n *** *** repeat vector for each position *** dense per-position *** output [35-vector] *** extract: position 10 and max of peptide positions [2-vector] *** dense *** output IDEA 2: - Two inputs: N-flank + peptide (left aligned), peptide (right alighted + C-flank - Bunch of convolutions - Global max pooling - Dense """ from __future__ import print_function import time import collections import numpy import pandas from .hyperparameters import HyperparameterDefaults from .class1_neural_network import DEFAULT_PREDICT_BATCH_SIZE from .flanking_encoding import FlankingEncoding class Class1CleavageNeuralNetwork(object): network_hyperparameter_defaults = HyperparameterDefaults( amino_acid_encoding="BLOSUM62", peptide_max_length=15, n_flank_length=10, c_flank_length=10, flanking_averages=False, convolutional_filters=16, convolutional_kernel_size=8, convolutional_activation="tanh", convolutional_kernel_l1_l2=[0.0001, 0.0001], dropout_rate=0.5, post_convolutional_dense_layer_sizes=[], ) """ Hyperparameters (and their default values) that affect the neural network architecture. """ fit_hyperparameter_defaults = HyperparameterDefaults( max_epochs=500, validation_split=0.1, early_stopping=True, minibatch_size=256, ) """ Hyperparameters for neural network training. """ early_stopping_hyperparameter_defaults = HyperparameterDefaults( patience=30, min_delta=0.0, ) """ Hyperparameters for early stopping. """ compile_hyperparameter_defaults = HyperparameterDefaults( optimizer="adam", learning_rate=None, ) """ Loss and optimizer hyperparameters. Any values supported by keras may be used. """ auxiliary_input_hyperparameter_defaults = HyperparameterDefaults( ) """ Allele feature hyperparameters. """ hyperparameter_defaults = network_hyperparameter_defaults.extend( fit_hyperparameter_defaults).extend( early_stopping_hyperparameter_defaults).extend( compile_hyperparameter_defaults).extend( auxiliary_input_hyperparameter_defaults) def __init__(self, **hyperparameters): self.hyperparameters = self.hyperparameter_defaults.with_defaults( hyperparameters) self._network = None self.network_json = None self.network_weights = None self.fit_info = [] def network(self): """ Return the keras model associated with this network. """ if self._network is None and self.network_json is not None: import keras.models self._network = keras.models.model_from_json(self.network_json) if self.network_weights is not None: self._network.set_weights(self.network_weights) return self._network def update_network_description(self): """ Update self.network_json and self.network_weights properties based on this instances's neural network. """ if self._network is not None: self.network_json = self._network.to_json() self.network_weights = self._network.get_weights() def fit( self, sequences, targets, sample_weights=None, shuffle_permutation=None, verbose=1, progress_callback=None, progress_preamble="", progress_print_interval=5.0): """ Parameters ---------- peptides n_flanks c_flanks targets : array of {0, 1} indicating hits (1) or decoys (0) Returns ------- """ x_dict = self.network_input(sequences) # Shuffle if shuffle_permutation is None: shuffle_permutation = numpy.random.permutation(len(targets)) targets = targets[shuffle_permutation] assert numpy.isnan(targets).sum() == 0, targets if sample_weights is not None: sample_weights = numpy.array(sample_weights)[shuffle_permutation] for key in list(x_dict): x_dict[key] = x_dict[key][shuffle_permutation] fit_info = collections.defaultdict(list) if self._network is None: self._network = self.make_network( **self.network_hyperparameter_defaults.subselect( self.hyperparameters)) if verbose > -1: self._network.summary() self.network().compile( loss="binary_crossentropy", optimizer=self.hyperparameters['optimizer']) last_progress_print = None min_val_loss_iteration = None min_val_loss = None start = time.time() for i in range(self.hyperparameters['max_epochs']): epoch_start = time.time() fit_history = self.network().fit( x_dict, targets, validation_split=self.hyperparameters['validation_split'], batch_size=self.hyperparameters['minibatch_size'], epochs=i + 1, sample_weight=sample_weights, initial_epoch=i, verbose=verbose) epoch_time = time.time() - epoch_start for (key, value) in fit_history.history.items(): fit_info[key].extend(value) # Print progress no more often than once every few seconds. if progress_print_interval is not None and ( not last_progress_print or ( time.time() - last_progress_print > progress_print_interval)): print((progress_preamble + " " + "Epoch %3d / %3d [%0.2f sec]: loss=%g. " "Min val loss (%s) at epoch %s" % ( i, self.hyperparameters['max_epochs'], epoch_time, fit_info['loss'][-1], str(min_val_loss), min_val_loss_iteration)).strip()) last_progress_print = time.time() if self.hyperparameters['validation_split']: val_loss = fit_info['val_loss'][-1] if min_val_loss is None or ( val_loss < min_val_loss - self.hyperparameters['min_delta']): min_val_loss = val_loss min_val_loss_iteration = i if self.hyperparameters['early_stopping']: threshold = ( min_val_loss_iteration + self.hyperparameters['patience']) if i > threshold: if progress_print_interval is not None: print((progress_preamble + " " + "Stopping at epoch %3d / %3d: loss=%g. " "Min val loss (%g) at epoch %s" % ( i, self.hyperparameters['max_epochs'], fit_info['loss'][-1], ( min_val_loss if min_val_loss is not None else numpy.nan), min_val_loss_iteration)).strip()) break if progress_callback: progress_callback() fit_info["time"] = time.time() - start fit_info["num_points"] = len(sequences.dataframe) self.fit_info.append(dict(fit_info)) if verbose > -1: print( "Output weights", *numpy.array( self.network().get_layer( "output").get_weights()).flatten()) def predict( self, peptides, n_flanks, c_flanks, batch_size=DEFAULT_PREDICT_BATCH_SIZE): sequences = FlankingEncoding( peptides=peptides, n_flanks=n_flanks, c_flanks=c_flanks) return self.predict_encoded(sequences=sequences, batch_size=batch_size) def predict_encoded( self, sequences, batch_size=DEFAULT_PREDICT_BATCH_SIZE): """ """ x_dict = self.network_input(sequences) raw_predictions = self.network().predict( x_dict, batch_size=batch_size) predictions = numpy.squeeze(raw_predictions).astype("float64") return predictions def network_input(self, sequences): """ Encode peptides to the fixed-length encoding expected by the neural network (which depends on the architecture). Parameters ---------- peptides : EncodableSequences or list of string Returns ------- numpy.array """ encoded = sequences.vector_encode( self.hyperparameters['amino_acid_encoding'], self.hyperparameters['peptide_max_length'], n_flank_length=self.hyperparameters['n_flank_length'], c_flank_length=self.hyperparameters['c_flank_length'], allow_unsupported_amino_acids=True) result = { "sequence": encoded.array, "peptide_length": encoded.peptide_lengths, } return result def make_network( self, amino_acid_encoding, peptide_max_length, n_flank_length, c_flank_length, flanking_averages, convolutional_filters, convolutional_kernel_size, convolutional_activation, convolutional_kernel_l1_l2, dropout_rate, post_convolutional_dense_layer_sizes): """ Helper function to make a keras network """ # We import keras here to avoid tensorflow debug output, etc. unless we # are actually about to use Keras. from keras.layers import Input import keras.layers.pooling import keras.initializers from keras.layers.core import Dense, Flatten, Dropout from keras.layers.merge import Concatenate model_inputs = {} empty_x_dict = self.network_input(FlankingEncoding([], [], [])) sequence_dims = empty_x_dict['sequence'].shape[1:] numpy.testing.assert_equal( sequence_dims[0], peptide_max_length + n_flank_length + c_flank_length) model_inputs['sequence'] = Input( shape=sequence_dims, dtype='float32', name='sequence') model_inputs['peptide_length'] = Input( shape=(1,), dtype='int32', name='peptide_length') current_layer = model_inputs['sequence'] current_layer = keras.layers.Conv1D( filters=convolutional_filters, kernel_size=convolutional_kernel_size, kernel_regularizer=keras.regularizers.l1_l2( *convolutional_kernel_l1_l2), padding="same", activation=convolutional_activation, name="conv1")(current_layer) if dropout_rate > 0: current_layer = keras.layers.Dropout( name="conv1_dropout", rate=dropout_rate, noise_shape=( None, 1, int(current_layer.get_shape()[-1])))( current_layer) convolutional_result = current_layer outputs_for_final_dense = [] for flank in ["n_flank", "c_flank"]: current_layer = convolutional_result for (i, size) in enumerate( list(post_convolutional_dense_layer_sizes) + [1]): current_layer = keras.layers.Conv1D( name="%s_post_%d" % (flank, i), filters=size, kernel_size=1, kernel_regularizer=keras.regularizers.l1_l2( *convolutional_kernel_l1_l2), activation=( "tanh" if size == 1 else convolutional_activation ))(current_layer) single_output_result = current_layer dense_flank = None if flank == "n_flank": def cleavage_extractor(x): return x[:, n_flank_length] single_output_at_cleavage_position = keras.layers.Lambda( cleavage_extractor, name="%s_cleaved" % flank)( single_output_result) def max_pool_over_peptide_extractor(lst): import tensorflow as tf (x, peptide_length) = lst # We generate a per-sample mask that is 1 for all peptide # positions except the first position, and 0 for all other # positions (i.e. n flank, c flank, and the first peptide # position). starts = n_flank_length + 1 limits = n_flank_length + peptide_length row = tf.expand_dims(tf.range(0, x.shape[1]), axis=0) mask = tf.logical_and( tf.greater_equal(row, starts), tf.less(row, limits)) # We are assuming that x >= -1. The final activation in the # previous layer should be a function that satisfies this # (e.g. sigmoid, tanh, relu). max_value = tf.reduce_max( (x + 1) * tf.expand_dims( tf.cast(mask, tf.float32), axis=-1), axis=1) - 1 # We flip the sign so that initializing the final dense # layer weights to 1s is reasonable. return -1 * max_value max_over_peptide = keras.layers.Lambda( max_pool_over_peptide_extractor, name="%s_internal_cleaved" % flank)([ single_output_result, model_inputs['peptide_length'] ]) def flanking_extractor(lst): import tensorflow as tf (x, peptide_length) = lst # mask is 1 for n_flank positions and 0 elsewhere. starts = 0 limits = n_flank_length row = tf.expand_dims(tf.range(0, x.shape[1]), axis=0) mask = tf.logical_and( tf.greater_equal(row, starts), tf.less(row, limits)) # We are assuming that x >= -1. The final activation in the # previous layer should be a function that satisfies this # (e.g. sigmoid, tanh, relu). average_value = tf.reduce_mean( (x + 1) * tf.expand_dims( tf.cast(mask, tf.float32), axis=-1), axis=1) - 1 return average_value if flanking_averages and n_flank_length > 0: # Also include average pooled of flanking sequences pooled_flank = keras.layers.Lambda( flanking_extractor, name="%s_extracted" % flank)([ convolutional_result, model_inputs['peptide_length'] ]) dense_flank = Dense( 1, activation="tanh", name="%s_avg_dense" % flank)( pooled_flank) else: assert flank == "c_flank" def cleavage_extractor(lst): import tensorflow as tf (x, peptide_length) = lst indexer = peptide_length + n_flank_length - 1 result = tf.squeeze( tf.gather(x, indexer, batch_dims=1, axis=1), -1) return result single_output_at_cleavage_position = keras.layers.Lambda( cleavage_extractor, name="%s_cleaved" % flank)([ single_output_result, model_inputs['peptide_length'] ]) def max_pool_over_peptide_extractor(lst): import tensorflow as tf (x, peptide_length) = lst # We generate a per-sample mask that is 1 for all peptide # positions except the last position, and 0 for all other # positions (i.e. n flank, c flank, and the last peptide # position). starts = n_flank_length limits = n_flank_length + peptide_length - 1 row = tf.expand_dims(tf.range(0, x.shape[1]), axis=0) mask = tf.logical_and( tf.greater_equal(row, starts), tf.less(row, limits)) # We are assuming that x >= -1. The final activation in the # previous layer should be a function that satisfies this # (e.g. sigmoid, tanh, relu). max_value = tf.reduce_max( (x + 1) * tf.expand_dims( tf.cast(mask, tf.float32), axis=-1), axis=1) - 1 # We flip the sign so that initializing the final dense # layer weights to 1s is reasonable. return -1 * max_value max_over_peptide = keras.layers.Lambda( max_pool_over_peptide_extractor, name="%s_internal_cleaved" % flank)([ single_output_result, model_inputs['peptide_length'] ]) def flanking_extractor(lst): import tensorflow as tf (x, peptide_length) = lst # mask is 1 for c_flank positions and 0 elsewhere. starts = n_flank_length + peptide_length limits = n_flank_length + peptide_length + c_flank_length row = tf.expand_dims(tf.range(0, x.shape[1]), axis=0) mask = tf.logical_and( tf.greater_equal(row, starts), tf.less(row, limits)) # We are assuming that x >= -1. The final activation in the # previous layer should be a function that satisfies this # (e.g. sigmoid, tanh, relu). average_value = tf.reduce_mean( (x + 1) * tf.expand_dims( tf.cast(mask, tf.float32), axis=-1), axis=1) - 1 return average_value if flanking_averages and c_flank_length > 0: # Also include average pooled of flanking sequences pooled_flank = keras.layers.Lambda( flanking_extractor, name="%s_extracted" % flank)([ convolutional_result, model_inputs['peptide_length'] ]) dense_flank = Dense( 1, activation="tanh", name="%s_avg_dense" % flank)( pooled_flank) outputs_for_final_dense.append(single_output_at_cleavage_position) outputs_for_final_dense.append(max_over_peptide) if dense_flank is not None: outputs_for_final_dense.append(dense_flank) if len(outputs_for_final_dense) == 1: (current_layer,) = outputs_for_final_dense else: current_layer = Concatenate(name="final")(outputs_for_final_dense) output = Dense( 1, activation="sigmoid", name="output", kernel_initializer=keras.initializers.Ones(), )(current_layer) model = keras.models.Model( inputs=[model_inputs[name] for name in sorted(model_inputs)], outputs=[output], name="predictor") return model def __getstate__(self): """ serialize to a dict. Model weights are included. For pickle support. Returns ------- dict """ self.update_network_description() result = dict(self.__dict__) result['_network'] = None return result def __setstate__(self, state): """ Deserialize. For pickle support. """ self.__dict__.update(state) def get_weights(self): """ Get the network weights Returns ------- list of numpy.array giving weights for each layer or None if there is no network """ self.update_network_description() return self.network_weights def get_config(self): """ serialize to a dict all attributes except model weights Returns ------- dict """ self.update_network_description() result = dict(self.__dict__) del result['_network'] result['network_weights'] = None return result @classmethod def from_config(cls, config, weights=None): """ deserialize from a dict returned by get_config(). Parameters ---------- config : dict weights : list of array, optional Network weights to restore weights_loader : callable, optional Function to call (no arguments) to load weights when needed Returns ------- Class1CleavageNeuralNetwork """ config = dict(config) instance = cls(**config.pop('hyperparameters')) instance.__dict__.update(config) instance.network_weights = weights assert instance._network is None return instance