#!/bin/bash # # Train pan-allele MHCflurry Class I models. # set -e set -x DOWNLOAD_NAME=models_class1_pan_unselected SCRATCH_DIR=${TMPDIR-/tmp}/mhcflurry-downloads-generation SCRIPT_ABSOLUTE_PATH="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)/$(basename "${BASH_SOURCE[0]}")" SCRIPT_DIR=$(dirname "$SCRIPT_ABSOLUTE_PATH") mkdir -p "$SCRATCH_DIR" rm -rf "$SCRATCH_DIR/$DOWNLOAD_NAME" mkdir "$SCRATCH_DIR/$DOWNLOAD_NAME" # Send stdout and stderr to a logfile included with the archive. exec > >(tee -ia "$SCRATCH_DIR/$DOWNLOAD_NAME/LOG.txt") exec 2> >(tee -ia "$SCRATCH_DIR/$DOWNLOAD_NAME/LOG.txt" >&2) # Log some environment info date pip freeze git status cd $SCRATCH_DIR/$DOWNLOAD_NAME cp $SCRIPT_DIR/generate_hyperparameters.py . python generate_hyperparameters.py > hyperparameters.yaml GPUS=$(nvidia-smi -L 2> /dev/null | wc -l) || GPUS=0 echo "Detected GPUS: $GPUS" PROCESSORS=$(getconf _NPROCESSORS_ONLN) echo "Detected processors: $PROCESSORS" for kind in with_mass_spec no_mass_spec do mhcflurry-class1-train-pan-allele-models \ --data "$(mhcflurry-downloads path data_curated)/curated_training_data.${kind}.csv.bz2" \ --allele-sequences "$(mhcflurry-downloads path allele_sequences)/allele_sequences.csv" \ --pretrain-data "$(mhcflurry-downloads path random_peptide_predictions)/predictions.csv.bz2" \ --held-out-measurements-per-allele-fraction-and-max 0.25 100 \ --ensemble-size 4 \ --hyperparameters hyperparameters.yaml \ --out-models-dir models.${kind} \ --worker-log-dir "$SCRATCH_DIR/$DOWNLOAD_NAME" \ --verbosity 0 \ --num-jobs $GPUS --max-tasks-per-worker 1 --gpus $GPUS --max-workers-per-gpu 1 done cp $SCRIPT_ABSOLUTE_PATH . bzip2 LOG.txt for i in $(ls LOG-worker.*.txt) ; do bzip2 $i ; done tar -cjf "../${DOWNLOAD_NAME}.tar.bz2" * echo "Created archive: $SCRATCH_DIR/${DOWNLOAD_NAME}.tar.bz2"