#!/bin/bash # # Model select based on consensus (agreement with full ensemble). # Uses models trained in models_class1_unselected download. # set -e set -x DOWNLOAD_NAME=models_class1_consensus SCRATCH_DIR=${TMPDIR-/tmp}/mhcflurry-downloads-generation SCRIPT_ABSOLUTE_PATH="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)/$(basename "${BASH_SOURCE[0]}")" SCRIPT_DIR=$(dirname "$SCRIPT_ABSOLUTE_PATH") mkdir -p "$SCRATCH_DIR" rm -rf "$SCRATCH_DIR/$DOWNLOAD_NAME" mkdir "$SCRATCH_DIR/$DOWNLOAD_NAME" # Send stdout and stderr to a logfile included with the archive. exec > >(tee -ia "$SCRATCH_DIR/$DOWNLOAD_NAME/LOG.txt") exec 2> >(tee -ia "$SCRATCH_DIR/$DOWNLOAD_NAME/LOG.txt" >&2) # Log some environment info date pip freeze git status cd $SCRATCH_DIR/$DOWNLOAD_NAME mkdir models GPUS=$(nvidia-smi -L 2> /dev/null | wc -l) || GPUS=0 echo "Detected GPUS: $GPUS" PROCESSORS=$(getconf _NPROCESSORS_ONLN) echo "Detected processors: $PROCESSORS" time mhcflurry-class1-select-allele-specific-models \ --models-dir "$(mhcflurry-downloads path models_class1_unselected)/models" \ --out-models-dir models \ --scoring consensus \ --num-jobs $(expr $PROCESSORS \* 2) --gpus $GPUS --max-workers-per-gpu 2 --max-tasks-per-worker 50 time mhcflurry-calibrate-percentile-ranks \ --models-dir models \ --num-peptides-per-length 100000 \ --num-jobs $(expr $PROCESSORS \* 2) --gpus $GPUS --max-workers-per-gpu 2 --max-tasks-per-worker 50 cp $SCRIPT_ABSOLUTE_PATH . bzip2 LOG.txt tar -cjf "../${DOWNLOAD_NAME}.tar.bz2" * echo "Created archive: $SCRATCH_DIR/$DOWNLOAD_NAME.tar.bz2"