""" """ import argparse import os import signal import sys import time import traceback import math from functools import partial import numpy import pandas from mhcnames import normalize_allele_name import tqdm # progress bar tqdm.monitor_interval = 0 # see https://github.com/tqdm/tqdm/issues/481 from mhcflurry.common import configure_logging from mhcflurry.local_parallelism import ( add_local_parallelism_args, worker_pool_with_gpu_assignments_from_args, call_wrapped_kwargs) from mhcflurry.cluster_parallelism import ( add_cluster_parallelism_args, cluster_results_from_args) # To avoid pickling large matrices to send to child processes when running in # parallel, we use this global variable as a place to store data. Data that is # stored here before creating the thread pool will be inherited to the child # processes upon fork() call, allowing us to share large data with the workers # via shared memory. GLOBAL_DATA = {} parser = argparse.ArgumentParser(usage=__doc__) parser.add_argument( "input_peptides", metavar="CSV", help="CSV file with 'peptide' column") parser.add_argument( "--predictor", required=True, choices=("mhcflurry", "netmhcpan4")) parser.add_argument( "--mhcflurry-models-dir", metavar="DIR", help="Directory to read MHCflurry models") parser.add_argument( "--mhcflurry-batch-size", type=int, default=4096, help="Keras batch size for MHCflurry predictions. Default: %(default)s") parser.add_argument( "--allele", default=None, required=True, nargs="+", help="Alleles to predict") parser.add_argument( "--chunk-size", type=int, default=100000, help="Num peptides per job. Default: %(default)s") parser.add_argument( "--out", metavar="DIR", help="Write results to DIR") parser.add_argument( "--max-peptides", type=int, help="Max peptides to process. For debugging.", default=None) parser.add_argument( "--reuse-predictions", metavar="DIR", nargs="*", help="Take predictions from indicated DIR instead of re-running them") parser.add_argument( "--result-dtype", default="float32", help="Numpy dtype of result. Default: %(default)s.") add_local_parallelism_args(parser) add_cluster_parallelism_args(parser) PREDICTOR_TO_COLS = { "mhcflurry": ["affinity"], "netmhcpan4": ["affinity", "percentile_rank", "elution_score"], } def load_results(dirname, result_df=None, dtype="float32"): peptides = pandas.read_csv( os.path.join(dirname, "peptides.csv")).peptide manifest_df = pandas.read_csv(os.path.join(dirname, "alleles.csv")) print( "Loading results. Existing data has", len(peptides), "peptides and", len(manifest_df), "columns") # Make adjustments for old style data. Can be removed later. if "kind" not in manifest_df.columns: manifest_df["kind"] = "affinity" if "col" not in manifest_df.columns: manifest_df["col"] = manifest_df.allele + " " + manifest_df.kind if result_df is None: result_df = pandas.DataFrame( index=peptides, columns=manifest_df.col.values, dtype=dtype) result_df[:] = numpy.nan peptides_to_assign = peptides mask = None else: manifest_df = manifest_df.loc[manifest_df.col.isin(result_df.columns)] mask = (peptides.isin(result_df.index)).values peptides_to_assign = peptides[mask] print("Will load", len(peptides), "peptides and", len(manifest_df), "cols") for _, row in tqdm.tqdm(manifest_df.iterrows(), total=len(manifest_df)): with open(os.path.join(dirname, row.path), "rb") as fd: value = numpy.load(fd)['arr_0'] if mask is not None: value = value[mask] result_df.loc[peptides_to_assign, row.col] = value return result_df def blocks_of_ones(arr): """ Given a binary matrix, return indices of rectangular blocks of 1s. Parameters ---------- arr : binary matrix Returns ------- List of (x1, y1, x2, y2) where all indices are INCLUSIVE. Each block spans from (x1, y1) on its upper left corner to (x2, y2) on its lower right corner. """ arr = arr.copy() blocks = [] while arr.sum() > 0: (x1, y1) = numpy.unravel_index(arr.argmax(), arr.shape) block = [x1, y1, x1, y1] # Extend in first dimension as far as possible down_stop = numpy.argmax(arr[x1:, y1] == 0) - 1 if down_stop == -1: block[2] = arr.shape[0] - 1 else: assert down_stop >= 0 block[2] = x1 + down_stop # Extend in second dimension as far as possible for i in range(y1, arr.shape[1]): if (arr[block[0] : block[2] + 1, i] == 1).all(): block[3] = i # Zero out block: assert ( arr[block[0]: block[2] + 1, block[1] : block[3] + 1] == 1).all(), (arr, block) arr[block[0] : block[2] + 1, block[1] : block[3] + 1] = 0 blocks.append(block) return blocks def run(argv=sys.argv[1:]): global GLOBAL_DATA # On sigusr1 print stack trace print("To show stack trace, run:\nkill -s USR1 %d" % os.getpid()) signal.signal(signal.SIGUSR1, lambda sig, frame: traceback.print_stack()) args = parser.parse_args(argv) configure_logging() serial_run = not args.cluster_parallelism and args.num_jobs == 0 alleles = [normalize_allele_name(a) for a in args.allele] alleles = sorted(set(alleles)) peptides = pandas.read_csv( args.input_peptides, nrows=args.max_peptides).peptide.drop_duplicates() print("Filtering to valid peptides. Starting at: ", len(peptides)) peptides = peptides[peptides.str.match("^[ACDEFGHIKLMNPQRSTVWY]+$")] print("Filtered to: ", len(peptides)) peptides = peptides.unique() num_peptides = len(peptides) print("Predictions for %d alleles x %d peptides." % ( len(alleles), num_peptides)) if not os.path.exists(args.out): print("Creating", args.out) os.mkdir(args.out) GLOBAL_DATA["predictor"] = args.predictor GLOBAL_DATA["args"] = args GLOBAL_DATA["cols"] = PREDICTOR_TO_COLS[args.predictor] # Write peptide and allele lists to out dir. out_peptides = os.path.abspath(os.path.join(args.out, "peptides.csv")) pandas.DataFrame({"peptide": peptides}).to_csv(out_peptides, index=False) print("Wrote: ", out_peptides) manifest_df = [] for allele in alleles: for col in PREDICTOR_TO_COLS[args.predictor]: manifest_df.append((allele, col)) manifest_df = pandas.DataFrame( manifest_df, columns=["allele", "kind"]) manifest_df["col"] = ( manifest_df.allele + " " + manifest_df.kind) manifest_df["path"] = manifest_df.col.map( lambda s: s.replace("*", "").replace(" ", ".")) + ".npz" out_manifest = os.path.abspath(os.path.join(args.out, "alleles.csv")) manifest_df.to_csv(out_manifest, index=False) col_to_filename = manifest_df.set_index("col").path.map( lambda s: os.path.abspath(os.path.join(args.out, s))) print("Wrote: ", out_manifest) result_df = pandas.DataFrame( index=peptides, columns=manifest_df.col.values, dtype=args.result_dtype) result_df[:] = numpy.nan if args.reuse_predictions: # Allocating this here to hit any memory errors as early as possible. is_null_matrix = numpy.ones( shape=(result_df.shape[0], len(alleles)), dtype="int8") for dirname in args.reuse_predictions: if not dirname: continue # ignore empty strings if os.path.exists(dirname): print("Loading predictions", dirname) result_df = load_results( dirname, result_df, dtype=args.result_dtype) else: print("WARNING: skipping because does not exist", dirname) # We rerun any alleles have nulls for any kind of values # (e.g. affinity, percentile rank, elution score). for (i, allele) in enumerate(alleles): sub_df = manifest_df.loc[manifest_df.allele == allele] is_null_matrix[:, i] = result_df[sub_df.col.values].isnull().any(1) print("Fraction null", is_null_matrix.mean()) print("Computing blocks.") start = time.time() blocks = blocks_of_ones(is_null_matrix) print("Found %d blocks in %f sec." % ( len(blocks), (time.time() - start))) work_items = [] for (row_index1, col_index1, row_index2, col_index2) in blocks: block_alleles = alleles[col_index1 : col_index2 + 1] block_peptides = result_df.index[row_index1 : row_index2 + 1] print("Block: ", row_index1, col_index1, row_index2, col_index2) num_chunks = int(math.ceil(len(block_peptides) / args.chunk_size)) print("Splitting peptides into %d chunks" % num_chunks) peptide_chunks = numpy.array_split(peptides, num_chunks) for chunk_peptides in peptide_chunks: work_item = { 'alleles': block_alleles, 'peptides': chunk_peptides, } work_items.append(work_item) else: # Same number of chunks for all alleles num_chunks = int(math.ceil(len(peptides) / args.chunk_size)) print("Splitting peptides into %d chunks" % num_chunks) peptide_chunks = numpy.array_split(peptides, num_chunks) work_items = [] for (_, chunk_peptides) in enumerate(peptide_chunks): work_item = { 'alleles': alleles, 'peptides': chunk_peptides, } work_items.append(work_item) print("Work items: ", len(work_items)) for (i, work_item) in enumerate(work_items): work_item["work_item_num"] = i # Combine work items to form tasks. tasks = [] peptides_in_last_task = None # We sort work_items to put small items first so they get combined. for work_item in sorted(work_items, key=lambda d: len(d['peptides'])): if peptides_in_last_task is not None and ( len(work_item['peptides']) + peptides_in_last_task < args.chunk_size): # Add to last task. tasks[-1]['work_item_dicts'].append(work_item) peptides_in_last_task += len(work_item['peptides']) else: # New task tasks.append({'work_item_dicts': [work_item]}) peptides_in_last_task = len(work_item['peptides']) print("Collected %d work items into %d tasks" % ( len(work_items), len(tasks))) if args.predictor == "mhcflurry": do_predictions_function = do_predictions_mhcflurry else: do_predictions_function = do_predictions_mhctools worker_pool = None start = time.time() if serial_run: # Serial run print("Running in serial.") results = ( do_predictions_function(**task) for task in tasks) elif args.cluster_parallelism: # Run using separate processes HPC cluster. print("Running on cluster.") results = cluster_results_from_args( args, work_function=do_predictions_function, work_items=tasks, constant_data=GLOBAL_DATA, input_serialization_method="dill", result_serialization_method="pickle", clear_constant_data=True) else: worker_pool = worker_pool_with_gpu_assignments_from_args(args) print("Worker pool", worker_pool) assert worker_pool is not None results = worker_pool.imap_unordered( partial(call_wrapped_kwargs, do_predictions_function), tasks, chunksize=1) allele_to_chunk_index_to_predictions = {} for allele in alleles: allele_to_chunk_index_to_predictions[allele] = {} last_write_time_per_column = dict((col, 0.0) for col in result_df.columns) def write_col(col): out_path = os.path.join( args.out, col_to_filename[col]) numpy.savez(out_path, result_df[col].values) print( "Wrote [%f%% null]:" % ( result_df[col].isnull().mean() * 100.0), out_path) for worker_results in tqdm.tqdm(results, total=len(work_items)): for (work_item_num, col_to_predictions) in worker_results: for (col, predictions) in col_to_predictions.items(): result_df.loc[ work_items[work_item_num]['peptides'], col ] = predictions if time.time() - last_write_time_per_column[col] > 180: write_col(col) last_write_time_per_column[col] = time.time() print("Done processing. Final write for each column.") for col in result_df.columns: write_col(col) if worker_pool: worker_pool.close() worker_pool.join() prediction_time = time.time() - start print("Done generating predictions in %0.2f min." % ( prediction_time / 60.0)) def do_predictions_mhctools(work_item_dicts, constant_data=None): """ Each tuple of work items consists of: (work_item_num, peptides, alleles) """ # This may run on the cluster in a way that misses all top level imports, # so we have to re-import everything here. import time import numpy import numpy.testing import mhctools if constant_data is None: constant_data = GLOBAL_DATA cols = constant_data['cols'] predictor_name = constant_data['args'].predictor results = [] for (i, d) in enumerate(work_item_dicts): work_item_num = d['work_item_num'] peptides = d['peptides'] alleles = d['alleles'] print("Processing work item", i + 1, "of", len(work_item_dicts)) result = {} results.append((work_item_num, result)) if predictor_name == "netmhcpan4": predictor = mhctools.NetMHCpan4( alleles=alleles, program_name="netMHCpan-4.0") else: raise ValueError("Unsupported", predictor_name) start = time.time() df = predictor.predict_peptides_dataframe(peptides) print("Predicted for %d peptides x %d alleles in %0.2f sec." % ( len(peptides), len(alleles), (time.time() - start))) for (allele, sub_df) in df.groupby("allele"): for col in cols: result["%s %s" % (allele, col)] = ( sub_df[col].values.astype( constant_data['args'].result_dtype)) return results def do_predictions_mhcflurry(work_item_dicts, constant_data=None): """ Each dict of work items should have keys: work_item_num, peptides, alleles """ # This may run on the cluster in a way that misses all top level imports, # so we have to re-import everything here. import time from mhcflurry.encodable_sequences import EncodableSequences from mhcflurry import Class1AffinityPredictor if constant_data is None: constant_data = GLOBAL_DATA args = constant_data['args'] assert args.predictor == "mhcflurry" assert constant_data['cols'] == ["affinity"] predictor = Class1AffinityPredictor.load(args.mhcflurry_models_dir) results = [] for (i, d) in enumerate(work_item_dicts): work_item_num = d['work_item_num'] peptides = d['peptides'] alleles = d['alleles'] print("Processing work item", i + 1, "of", len(work_item_dicts)) result = {} results.append((work_item_num, result)) start = time.time() peptides = EncodableSequences.create(peptides) for (i, allele) in enumerate(alleles): print("Processing allele %d / %d: %0.2f sec elapsed" % ( i + 1, len(alleles), time.time() - start)) for col in ["affinity"]: result["%s %s" % (allele, col)] = predictor.predict( peptides=peptides, allele=allele, throw=False, model_kwargs={ 'batch_size': args.mhcflurry_batch_size, }).astype(constant_data['args'].result_dtype) print("Done predicting in", time.time() - start, "sec") return results if __name__ == '__main__': run()